Search for blocks/addresses/...
Proofgold Asset
asset id
bc484bbfe6e5b674598d7be212af655853f275357aa79181d13a39b679885782
asset hash
1e6592b1e4e952cd3c4f6a721932b3e111f9b494ee72dfd6083ae3e01de1baa4
bday / block
33914
tx
63897..
preasset
doc published by
PrDsC..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
a26ab..
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 .
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
∀ x6 :
ι → ι
.
∀ x7 :
ι → ο
.
∀ x8 .
∀ x9 x10 x11 :
ι → ο
.
∀ x12 x13 :
ι →
ι → ι
.
∀ x14 x15 x16 x17 :
ι → ο
.
∀ x18 .
∀ x19 :
ι → ο
.
∀ x20 :
ι →
ι → ι
.
∀ x21 .
∀ x22 :
ι →
ι → ο
.
∀ x23 :
ι → ι
.
∀ x24 x25 :
ι →
ι → ι
.
∀ x26 :
ι → ι
.
∀ x27 .
∀ x28 :
ι →
ι → ο
.
∀ x29 :
ι → ο
.
∀ x30 :
ι →
ι → ο
.
∀ x31 :
ι → ι
.
(
∀ x32 x33 x34 .
(
x30
x33
(
x31
x34
)
⟶
False
)
⟶
x32
=
x33
⟶
x29
x34
⟶
x22
x32
x21
⟶
x28
x32
(
x25
(
x26
x34
)
x27
)
⟶
x28
(
x24
(
x23
(
x26
x34
)
)
x27
)
x32
⟶
False
)
⟶
(
∀ x32 x33 .
(
x0
x32
x33
=
x24
x32
x33
⟶
False
)
⟶
x29
x32
⟶
x22
x33
x1
⟶
False
)
⟶
(
∀ x32 x33 .
(
x20
x32
x33
=
x32
⟶
False
)
⟶
x29
x33
⟶
x30
x32
(
x31
x33
)
⟶
False
)
⟶
(
∀ x32 .
(
x22
(
x26
x32
)
x1
⟶
False
)
⟶
x29
x32
⟶
False
)
⟶
(
∀ x32 .
(
x23
(
x23
x32
)
=
x32
⟶
False
)
⟶
x19
x32
⟶
False
)
⟶
(
x4
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
⟶
False
)
⟶
(
x28
x18
x27
⟶
False
)
⟶
(
(
x22
x1
(
x6
x5
)
⟶
False
)
⟶
False
)
⟶
(
(
x22
x18
x5
⟶
False
)
⟶
False
)
⟶
(
(
x22
x27
x1
⟶
False
)
⟶
False
)
⟶
(
(
x22
x27
x5
⟶
False
)
⟶
False
)
⟶
(
(
x7
x8
⟶
False
)
⟶
False
)
⟶
(
(
x17
x21
⟶
False
)
⟶
False
)
⟶
(
(
x9
x5
⟶
False
)
⟶
False
)
⟶
(
(
x29
x2
⟶
False
)
⟶
False
)
⟶
(
(
x8
=
x1
⟶
False
)
⟶
False
)
⟶
(
(
x16
x8
⟶
False
)
⟶
x9
x8
⟶
False
)
⟶
(
(
x10
x21
⟶
False
)
⟶
x9
x21
⟶
False
)
⟶
(
(
x14
x2
⟶
False
)
⟶
x15
x2
⟶
False
)
⟶
(
(
x14
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
False
)
⟶
x15
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
False
)
⟶
(
(
x14
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
x15
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
(
(
x14
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
False
)
⟶
x15
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
False
)
⟶
(
(
x14
(
x24
(
x23
(
x26
x2
)
)
x27
)
⟶
False
)
⟶
x15
(
x24
(
x23
(
x26
x2
)
)
x27
)
⟶
False
)
⟶
(
(
x9
x21
⟶
False
)
⟶
x11
x21
⟶
False
)
⟶
(
(
x15
x2
⟶
False
)
⟶
x29
x2
⟶
False
)
⟶
(
(
x11
x21
⟶
False
)
⟶
x17
x21
⟶
False
)
⟶
(
(
x3
x2
=
x31
x2
⟶
False
)
⟶
x29
x2
⟶
False
)
⟶
(
(
x3
(
x24
x2
x27
)
=
x31
(
x24
x2
x27
)
⟶
False
)
⟶
x29
(
x24
x2
x27
)
⟶
False
)
⟶
(
(
x15
(
x23
(
x26
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
x15
(
x26
(
x24
x2
x27
)
)
⟶
False
)
⟶
(
(
x15
(
x23
(
x26
x2
)
)
⟶
False
)
⟶
x15
(
x26
x2
)
⟶
False
)
⟶
(
(
x13
x18
x2
=
x26
x2
⟶
False
)
⟶
x29
x2
⟶
False
)
⟶
(
(
x13
x18
(
x24
x2
x27
)
=
x26
(
x24
x2
x27
)
⟶
False
)
⟶
x29
(
x24
x2
x27
)
⟶
False
)
⟶
(
(
x15
x27
⟶
False
)
⟶
x22
x27
x5
⟶
False
)
⟶
(
(
x15
x18
⟶
False
)
⟶
x22
x18
x5
⟶
False
)
⟶
(
(
x29
x27
⟶
False
)
⟶
x7
x8
⟶
x22
x27
x8
⟶
False
)
⟶
(
(
x19
(
x26
x2
)
⟶
False
)
⟶
x16
x8
⟶
x22
(
x26
x2
)
x8
⟶
False
)
⟶
(
(
x19
(
x26
(
x24
x2
x27
)
)
⟶
False
)
⟶
x16
x8
⟶
x22
(
x26
(
x24
x2
x27
)
)
x8
⟶
False
)
⟶
(
(
x14
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
x10
x21
⟶
x22
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x21
⟶
False
)
⟶
(
(
x15
(
x26
(
x24
x2
x27
)
)
⟶
False
)
⟶
x9
x8
⟶
x22
(
x26
(
x24
x2
x27
)
)
x8
⟶
False
)
⟶
(
(
x15
(
x26
x2
)
⟶
False
)
⟶
x9
x8
⟶
x22
(
x26
x2
)
x8
⟶
False
)
⟶
(
(
x28
x2
x2
⟶
False
)
⟶
(
x28
x2
x2
⟶
False
)
⟶
x14
x2
⟶
x14
x2
⟶
False
)
⟶
(
(
x28
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
(
x28
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
False
)
⟶
x14
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
x14
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
(
(
x28
(
x25
(
x26
x2
)
x27
)
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
False
)
⟶
(
x28
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
x14
(
x25
(
x26
x2
)
x27
)
⟶
x14
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
False
)
⟶
(
(
x9
x8
⟶
False
)
⟶
x9
x5
⟶
x22
x8
(
x6
x5
)
⟶
False
)
⟶
(
(
x29
(
x24
x2
x27
)
⟶
False
)
⟶
x29
x27
⟶
x29
x2
⟶
False
)
⟶
(
(
x15
(
x24
x2
x27
)
⟶
False
)
⟶
x15
x27
⟶
x15
x2
⟶
False
)
⟶
(
(
x15
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
False
)
⟶
x15
x27
⟶
x15
(
x23
(
x26
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
(
(
x15
(
x24
(
x23
(
x26
x2
)
)
x27
)
⟶
False
)
⟶
x15
x27
⟶
x15
(
x23
(
x26
x2
)
)
⟶
False
)
⟶
(
(
x15
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
x15
x27
⟶
x15
(
x26
x2
)
⟶
False
)
⟶
(
(
x15
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
False
)
⟶
x15
x27
⟶
x15
(
x26
(
x24
x2
x27
)
)
⟶
False
)
⟶
(
(
x4
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
⟶
False
)
⟶
(
x30
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x3
x2
)
⟶
False
)
⟶
False
)
⟶
(
(
x28
(
x23
(
x23
(
x26
(
x24
x2
x27
)
)
)
)
(
x23
(
x23
(
x26
x2
)
)
)
⟶
False
)
⟶
x15
(
x23
(
x26
(
x24
x2
x27
)
)
)
⟶
x15
(
x23
(
x26
x2
)
)
⟶
x28
(
x23
(
x26
x2
)
)
(
x23
(
x26
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
(
(
x4
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
⟶
False
)
⟶
x30
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x3
(
x24
x2
x27
)
)
⟶
False
)
⟶
(
(
x22
(
x20
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x2
)
x21
⟶
False
)
⟶
x29
x2
⟶
x30
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x31
x2
)
⟶
False
)
⟶
(
(
x28
(
x24
(
x23
(
x26
x2
)
)
x27
)
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
False
)
⟶
x14
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
x14
(
x20
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x2
)
⟶
x14
(
x24
(
x23
(
x26
x2
)
)
x27
)
⟶
x28
(
x20
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x2
)
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
x28
(
x24
(
x23
(
x26
x2
)
)
x27
)
(
x20
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x2
)
⟶
False
)
⟶
(
(
x28
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
False
)
⟶
x14
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
x14
(
x25
(
x26
x2
)
x27
)
⟶
x14
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
⟶
x28
(
x25
(
x26
x2
)
x27
)
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
⟶
x28
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
(
x29
x2
⟶
x29
(
x24
x2
x27
)
⟶
x28
(
x24
x2
x27
)
x2
⟶
x28
(
x0
x2
x27
)
(
x24
x2
x27
)
⟶
False
)
⟶
(
(
x28
(
x24
x2
x27
)
(
x24
x2
x27
)
⟶
False
)
⟶
x15
x27
⟶
x15
x2
⟶
x15
x2
⟶
x28
x2
x2
⟶
False
)
⟶
(
(
x28
(
x20
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x2
)
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
x29
x2
⟶
x30
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x31
x2
)
⟶
False
)
⟶
(
(
x28
(
x24
(
x23
(
x26
x2
)
)
x27
)
(
x20
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
x2
)
⟶
False
)
⟶
x29
x2
⟶
x30
(
x12
(
x3
x2
)
(
x3
(
x24
x2
x27
)
)
)
(
x31
x2
)
⟶
False
)
⟶
(
(
x28
(
x23
(
x26
x2
)
)
(
x23
(
x26
(
x24
x2
x27
)
)
)
⟶
False
)
⟶
x15
(
x23
(
x26
(
x24
x2
x27
)
)
)
⟶
x15
x27
⟶
x15
(
x23
(
x26
x2
)
)
⟶
x28
(
x24
(
x23
(
x26
x2
)
)
x27
)
(
x24
(
x23
(
x26
(
x24
x2
x27
)
)
)
x27
)
⟶
False
)
⟶
(
(
x28
(
x26
(
x24
x2
x27
)
)
(
x26
x2
)
⟶
False
)
⟶
x15
(
x26
x2
)
⟶
x15
x27
⟶
x15
(
x26
(
x24
x2
x27
)
)
⟶
x28
(
x25
(
x26
(
x24
x2
x27
)
)
x27
)
(
x25
(
x26
x2
)
x27
)
⟶
False
)
⟶
(
(
x28
(
x24
x2
x27
)
x2
⟶
False
)
⟶
(
x28
x18
x27
⟶
False
)
⟶
x15
x18
⟶
x15
(
x24
x2
x27
)
⟶
x15
x2
⟶
x28
(
x13
x18
(
x24
x2
x27
)
)
(
x13
x18
x2
)
⟶
False
)
⟶
False
(proof)