Search for blocks/addresses/...
Proofgold Asset
asset id
1fdfe6a15bab2ba955c9c8291ad901b8a7900fed52ba2db4144d67eba08f328a
asset hash
d5aebb9dee05bb95c1bf272c1b75feec2c8e3265aa2aca94abc91a20a7baa2bc
bday / block
1476
tx
a6670..
preasset
doc published by
PrGxv..
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
17e35..
exandE_ii
:
∀ x0 x1 :
(
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Known
3aba6..
exactly1of2_def
:
exactly1of2
=
λ x1 x2 : ο .
or
(
and
x1
(
not
x2
)
)
(
and
(
not
x1
)
x2
)
Known
26b88..
tab_pos_or
:
∀ x0 x1 : ο .
or
x0
x1
⟶
(
x0
⟶
False
)
⟶
(
x1
⟶
False
)
⟶
False
Theorem
70d65..
tab_pos_exactly1of2
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
(
x0
⟶
not
x1
⟶
False
)
⟶
(
not
x0
⟶
x1
⟶
False
)
⟶
False
(proof)
Known
6a5f4..
tab_neg_or
:
∀ x0 x1 : ο .
not
(
or
x0
x1
)
⟶
(
not
x0
⟶
not
x1
⟶
False
)
⟶
False
Known
77eb0..
tab_neg_and
:
∀ x0 x1 : ο .
not
(
and
x0
x1
)
⟶
(
not
x0
⟶
False
)
⟶
(
not
x1
⟶
False
)
⟶
False
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
5f92b..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
6fb1f..
tab_neg_exactly1of2
:
∀ x0 x1 : ο .
not
(
exactly1of2
x0
x1
)
⟶
(
x0
⟶
x1
⟶
False
)
⟶
(
not
x0
⟶
not
x1
⟶
False
)
⟶
False
(proof)
Known
71e01..
exactly1of3_def
:
exactly1of3
=
λ x1 x2 x3 : ο .
or
(
and
(
exactly1of2
x1
x2
)
(
not
x3
)
)
(
and
(
and
(
not
x1
)
(
not
x2
)
)
x3
)
Known
57def..
tab_pos_and
:
∀ x0 x1 : ο .
and
x0
x1
⟶
(
x0
⟶
x1
⟶
False
)
⟶
False
Theorem
60b29..
tab_pos_exactly1of3
:
∀ x0 x1 x2 : ο .
exactly1of3
x0
x1
x2
⟶
(
x0
⟶
not
x1
⟶
not
x2
⟶
False
)
⟶
(
not
x0
⟶
x1
⟶
not
x2
⟶
False
)
⟶
(
not
x0
⟶
not
x1
⟶
x2
⟶
False
)
⟶
False
(proof)
Theorem
e5479..
tab_neg_exactly1of3
:
∀ x0 x1 x2 : ο .
not
(
exactly1of3
x0
x1
x2
)
⟶
(
not
x0
⟶
not
x1
⟶
not
x2
⟶
False
)
⟶
(
x0
⟶
x1
⟶
False
)
⟶
(
x0
⟶
x2
⟶
False
)
⟶
(
x1
⟶
x2
⟶
False
)
⟶
False
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Known
61ad0..
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Known
9d2e6..
nIn_I2
:
∀ x0 x1 .
(
In
x0
x1
⟶
False
)
⟶
nIn
x0
x1
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
61640..
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
Theorem
3903a..
Regularity
:
∀ x0 x1 .
In
x1
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
In
x3
x0
)
(
not
(
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x0
)
(
In
x5
x3
)
⟶
x4
)
⟶
x4
)
)
⟶
x2
)
⟶
x2
(proof)
Known
6e0ca..
In_rec_G_i_def
:
In_rec_poly_G_i
=
λ x1 :
ι →
(
ι → ι
)
→ ι
.
λ x2 x3 .
∀ x4 :
ι →
ι → ο
.
(
∀ x5 .
∀ x6 :
ι → ι
.
(
∀ x7 .
In
x7
x5
⟶
x4
x7
(
x6
x7
)
)
⟶
x4
x5
(
x1
x5
x6
)
)
⟶
x4
x2
x3
Theorem
0857e..
In_rec_G_i_c
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
In
x3
x1
⟶
In_rec_poly_G_i
x0
x3
(
x2
x3
)
)
⟶
In_rec_poly_G_i
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
a0610..
In_rec_G_i_inv
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 x2 .
In_rec_poly_G_i
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
and
(
∀ x5 .
In
x5
x1
⟶
In_rec_poly_G_i
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
e5412..
In_rec_G_i_f
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 x2 x3 .
In_rec_poly_G_i
x0
x1
x2
⟶
In_rec_poly_G_i
x0
x1
x3
⟶
x2
=
x3
(proof)
Known
02a06..
In_rec_i_def
:
In_rec_poly_i
=
λ x1 :
ι →
(
ι → ι
)
→ ι
.
λ x2 .
Eps_i
(
In_rec_poly_G_i
x1
x2
)
Known
4cb75..
Eps_i_R
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
Eps_i
x0
)
Theorem
6f6a6..
In_rec_G_i_In_rec_i
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_poly_G_i
x0
x1
(
In_rec_poly_i
x0
x1
)
(proof)
Theorem
bcc7f..
In_rec_G_i_In_rec_d
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_poly_G_i
x0
x1
(
x0
x1
(
In_rec_poly_i
x0
)
)
(proof)
Theorem
f78bc..
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_poly_i
x0
x1
=
x0
x1
(
In_rec_poly_i
x0
)
(proof)
Known
2cd4b..
Inj1_def
:
Inj1
=
In_rec_poly_i
(
λ x1 .
λ x2 :
ι → ι
.
binunion
(
Sing
0
)
(
Repl
x1
x2
)
)
Known
09697..
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
Repl
x0
x1
=
Repl
x0
x2
Theorem
d1941..
Inj1_eq
:
∀ x0 .
Inj1
x0
=
binunion
(
Sing
0
)
(
Repl
x0
Inj1
)
(proof)
Known
0ce8c..
binunionI1
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
(
binunion
x0
x1
)
Known
1f15b..
SingI
:
∀ x0 .
In
x0
(
Sing
x0
)
Theorem
8d83e..
Inj1I1
:
∀ x0 .
In
0
(
Inj1
x0
)
(proof)
Known
eb8b4..
binunionI2
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
x2
(
binunion
x0
x1
)
Known
f1bf4..
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
(
Repl
x0
x1
)
Theorem
22441..
Inj1I2
:
∀ x0 x1 .
In
x1
x0
⟶
In
(
Inj1
x1
)
(
Inj1
x0
)
(proof)
Known
f9974..
binunionE_cases
:
∀ x0 x1 x2 .
In
x2
(
binunion
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
In
x2
x1
⟶
x3
)
⟶
x3
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
9ae18..
SingE
:
∀ x0 x1 .
In
x1
(
Sing
x0
)
⟶
x1
=
x0
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
74a75..
ReplE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
Theorem
f3200..
Inj1E
:
∀ x0 x1 .
In
x1
(
Inj1
x0
)
⟶
or
(
x1
=
0
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
In
x3
x0
)
(
x1
=
Inj1
x3
)
⟶
x2
)
⟶
x2
)
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
474ab..
Inj1E_impred
:
∀ x0 x1 .
In
x1
(
Inj1
x0
)
⟶
∀ x2 :
ι → ο
.
x2
0
⟶
(
∀ x3 .
In
x3
x0
⟶
x2
(
Inj1
x3
)
)
⟶
x2
x1
(proof)
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
a1706..
Inj1NE1
:
∀ x0 .
not
(
Inj1
x0
=
0
)
(proof)
Theorem
a6792..
Inj1NE2
:
∀ x0 .
nIn
(
Inj1
x0
)
(
Sing
0
)
(proof)
Known
4f75b..
Inj0_def
:
Inj0
=
λ x1 .
Repl
x1
Inj1
Theorem
88e5c..
Inj0I
:
∀ x0 x1 .
In
x1
x0
⟶
In
(
Inj1
x1
)
(
Inj0
x0
)
(proof)
Theorem
0e45c..
Inj0E
:
∀ x0 x1 .
In
x1
(
Inj0
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
In
x3
x0
)
(
x1
=
Inj1
x3
)
⟶
x2
)
⟶
x2
(proof)
Theorem
5bd6f..
Inj0E_impred
:
∀ x0 x1 .
In
x1
(
Inj0
x0
)
⟶
∀ x2 :
ι → ο
.
(
∀ x3 .
In
x3
x0
⟶
x2
(
Inj1
x3
)
)
⟶
x2
x1
(proof)
Known
f7ea7..
Unj_def
:
Unj
=
In_rec_poly_i
(
λ x1 .
Repl
(
setminus
x1
(
Sing
0
)
)
)
Known
54d83..
setminusE1
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
In
x2
x0
Theorem
f52b8..
Unj_eq
:
∀ x0 .
Unj
x0
=
Repl
(
setminus
x0
(
Sing
0
)
)
Unj
(proof)
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
0f096..
ReplE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
243aa..
setminusE_impred
:
∀ x0 x1 x2 .
In
x2
(
setminus
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
nIn
x2
x1
⟶
x3
)
⟶
x3
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
626dc..
setminusI
:
∀ x0 x1 x2 .
In
x2
x0
⟶
nIn
x2
x1
⟶
In
x2
(
setminus
x0
x1
)
Theorem
c76aa..
Unj_Inj1_eq
:
∀ x0 .
Unj
(
Inj1
x0
)
=
x0
(proof)
Theorem
0139a..
Inj1_inj
:
∀ x0 x1 .
Inj1
x0
=
Inj1
x1
⟶
x0
=
x1
(proof)
Theorem
c3d4f..
Unj_Inj0_eq
:
∀ x0 .
Unj
(
Inj0
x0
)
=
x0
(proof)
Theorem
49afe..
Inj0_inj
:
∀ x0 x1 .
Inj0
x0
=
Inj0
x1
⟶
x0
=
x1
(proof)
Known
8a1cd..
Repl_Empty
:
∀ x0 :
ι → ι
.
Repl
0
x0
=
0
Theorem
fc3ab..
Inj0_0
:
Inj0
0
=
0
(proof)
Theorem
efcec..
Inj0_Inj1_neq
:
∀ x0 x1 .
not
(
Inj0
x0
=
Inj1
x1
)
(proof)
Known
26db0..
setsum_def
:
setsum
=
λ x1 x2 .
binunion
(
Repl
x1
Inj0
)
(
Repl
x2
Inj1
)
Theorem
93236..
Inj0_setsum
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
(
Inj0
x2
)
(
setsum
x0
x1
)
(proof)
Theorem
9ea3e..
Inj1_setsum
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
(
Inj1
x2
)
(
setsum
x0
x1
)
(proof)
Theorem
76cef..
setsum_Inj_inv
:
∀ x0 x1 x2 .
In
x2
(
setsum
x0
x1
)
⟶
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
x2
=
Inj0
x4
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x1
)
(
x2
=
Inj1
x4
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
351c1..
setsum_Inj_inv_impred
:
∀ x0 x1 x2 .
In
x2
(
setsum
x0
x1
)
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
In
x4
x0
⟶
x3
(
Inj0
x4
)
)
⟶
(
∀ x4 .
In
x4
x1
⟶
x3
(
Inj1
x4
)
)
⟶
x3
x2
(proof)
Theorem
b9c5c..
Inj0_setsum_0L
:
∀ x0 .
setsum
0
x0
=
Inj0
x0
(proof)
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
374e6..
pairSubq
:
∀ x0 x1 x2 x3 .
Subq
x0
x2
⟶
Subq
x1
x3
⟶
Subq
(
setsum
x0
x1
)
(
setsum
x2
x3
)
(proof)
Known
59a1f..
combine_funcs_def
:
combine_funcs
=
λ x1 x2 .
λ x3 x4 :
ι → ι
.
λ x5 .
If_i
(
x5
=
Inj0
(
Unj
x5
)
)
(
x3
(
Unj
x5
)
)
(
x4
(
Unj
x5
)
)
Known
0d2f9..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
34a93..
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
(proof)
Known
81513..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
d805a..
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
(proof)