Search for blocks/addresses/...
Proofgold Asset
asset id
69eba997e1408a70005ab9a438f00aa95bd059b735161f5aebc7202f061ac6fb
asset hash
217e443e4aad4f66d782742de45263276d3fe2a024323f02819e2ba04319bde7
bday / block
1478
tx
f19eb..
preasset
doc published by
PrGxv..
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
e70ba..
exandE_iii
:
∀ x0 x1 :
(
ι →
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
b35ea..
exandE_iiii
:
∀ x0 x1 :
(
ι →
ι →
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
9132c..
exandE_iio
:
∀ x0 x1 :
(
ι →
ι → ο
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ο
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ο
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
0f4a2..
exandE_iiio
:
∀ x0 x1 :
(
ι →
ι →
ι → ο
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ο
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ο
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Definition
Descr_ii
Descr_ii
:=
λ x0 :
(
ι → ι
)
→ ο
.
λ x1 .
Eps_i
(
λ x2 .
∀ x3 :
ι → ι
.
x0
x3
⟶
x3
x1
=
x2
)
Known
4cb75..
Eps_i_R
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
Eps_i
x0
)
Theorem
Descr_ii_prop
Descr_ii_prop
:
∀ x0 :
(
ι → ι
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ι
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ι
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_ii
x0
)
(proof)
Definition
Descr_iii
Descr_iii
:=
λ x0 :
(
ι →
ι → ι
)
→ ο
.
λ x1 x2 .
Eps_i
(
λ x3 .
∀ x4 :
ι →
ι → ι
.
x0
x4
⟶
x4
x1
x2
=
x3
)
Theorem
Descr_iii_prop
Descr_iii_prop
:
∀ x0 :
(
ι →
ι → ι
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι →
ι → ι
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_iii
x0
)
(proof)
Definition
Descr_iio
Descr_iio
:=
λ x0 :
(
ι →
ι → ο
)
→ ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
x0
x3
⟶
x3
x1
x2
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
Descr_iio_prop
Descr_iio_prop
:
∀ x0 :
(
ι →
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_iio
x0
)
(proof)
Definition
Descr_Vo1
Descr_Vo1
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 .
∀ x2 :
ι → ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo1_prop
Descr_Vo1_prop
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo1
x0
)
(proof)
Definition
Descr_Vo2
Descr_Vo2
:=
λ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 :
ι → ο
.
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo2_prop
Descr_Vo2_prop
:
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo2
x0
)
(proof)
Definition
Descr_Vo3
Descr_Vo3
:=
λ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
λ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo3_prop
Descr_Vo3_prop
:
∀ x0 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo3
x0
)
(proof)
Definition
Descr_Vo4
Descr_Vo4
:=
λ x0 :
(
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→ ο
.
λ x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo4_prop
Descr_Vo4_prop
:
∀ x0 :
(
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo4
x0
)
(proof)
Definition
711f6..
If_ii
:=
λ x0 : ο .
λ x1 x2 :
ι → ι
.
λ x3 .
If_i
x0
(
x1
x3
)
(
x2
x3
)
Known
0d2f9..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
7c9c7..
If_ii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
x0
⟶
711f6..
x0
x1
x2
=
x1
(proof)
Known
81513..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
bc627..
If_ii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
not
x0
⟶
711f6..
x0
x1
x2
=
x2
(proof)
Definition
0c026..
If_iii
:=
λ x0 : ο .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 .
If_i
x0
(
x1
x3
x4
)
(
x2
x3
x4
)
Theorem
ce5db..
If_iii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
x0
⟶
0c026..
x0
x1
x2
=
x1
(proof)
Theorem
1202f..
If_iii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
not
x0
⟶
0c026..
x0
x1
x2
=
x2
(proof)
Definition
5011a..
If_Vo1
:=
λ x0 : ο .
λ x1 x2 :
ι → ο
.
λ x3 .
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Known
39854..
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
36071..
If_Vo1_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ο
.
x0
⟶
5011a..
x0
x1
x2
=
x1
(proof)
Known
eb789..
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
29836..
If_Vo1_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ο
.
not
x0
⟶
5011a..
x0
x1
x2
=
x2
(proof)
Definition
a113b..
If_iio
:=
λ x0 : ο .
λ x1 x2 :
ι →
ι → ο
.
λ x3 x4 .
and
(
x0
⟶
x1
x3
x4
)
(
not
x0
⟶
x2
x3
x4
)
Theorem
96e82..
If_iio_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ο
.
x0
⟶
a113b..
x0
x1
x2
=
x1
(proof)
Theorem
b6c73..
If_iio_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ο
.
not
x0
⟶
a113b..
x0
x1
x2
=
x2
(proof)
Definition
06f01..
If_Vo2
:=
λ x0 : ο .
λ x1 x2 :
(
ι → ο
)
→ ο
.
λ x3 :
ι → ο
.
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Theorem
083fe..
If_Vo2_1
:
∀ x0 : ο .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
⟶
06f01..
x0
x1
x2
=
x1
(proof)
Theorem
d4610..
If_Vo2_0
:
∀ x0 : ο .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
not
x0
⟶
06f01..
x0
x1
x2
=
x2
(proof)
Definition
3dad2..
If_Vo3
:=
λ x0 : ο .
λ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x3 :
(
ι → ο
)
→ ο
.
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Theorem
2a734..
If_Vo3_1
:
∀ x0 : ο .
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x0
⟶
3dad2..
x0
x1
x2
=
x1
(proof)
Theorem
f6f11..
If_Vo3_0
:
∀ x0 : ο .
∀ x1 x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
not
x0
⟶
3dad2..
x0
x1
x2
=
x2
(proof)
Definition
eb5c9..
If_Vo4
:=
λ x0 : ο .
λ x1 x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
λ x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Theorem
eadde..
If_Vo4_1
:
∀ x0 : ο .
∀ x1 x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
x0
⟶
eb5c9..
x0
x1
x2
=
x1
(proof)
Theorem
4223b..
If_Vo4_0
:
∀ x0 : ο .
∀ x1 x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
not
x0
⟶
eb5c9..
x0
x1
x2
=
x2
(proof)
Definition
61278..
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
λ x2 :
ι → ι
.
∀ x3 :
ι →
(
ι → ι
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
6445c..
In_rec_ii
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
Descr_ii
(
61278..
x0
x1
)
Theorem
a4d18..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
In
x3
x1
⟶
61278..
x0
x3
(
x2
x3
)
)
⟶
61278..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
7cec9..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
61278..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
and
(
∀ x5 .
In
x5
x1
⟶
61278..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Known
61ad0..
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
In
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Theorem
2c9e0..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι → ι
.
61278..
x0
x1
x2
⟶
61278..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
3124e..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
61278..
x0
x1
(
6445c..
x0
x1
)
(proof)
Theorem
58891..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
61278..
x0
x1
(
x0
x1
(
6445c..
x0
)
)
(proof)
Theorem
3b5bd..
In_rec_ii_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6445c..
x0
x1
=
x0
x1
(
6445c..
x0
)
(proof)
Definition
ca584..
:=
λ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
λ x1 .
λ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
(
ι →
ι → ι
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι →
ι → ι
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
28408..
In_rec_iii
:=
λ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
λ x1 .
Descr_iii
(
ca584..
x0
x1
)
Theorem
94633..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι →
ι → ι
.
(
∀ x3 .
In
x3
x1
⟶
ca584..
x0
x3
(
x2
x3
)
)
⟶
ca584..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
f2e34..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
ca584..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι → ι
.
and
(
∀ x5 .
In
x5
x1
⟶
ca584..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
53b27..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
ca584..
x0
x1
x2
⟶
ca584..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
c7b81..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
ca584..
x0
x1
(
28408..
x0
x1
)
(proof)
Theorem
15004..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
ca584..
x0
x1
(
x0
x1
(
28408..
x0
)
)
(proof)
Theorem
fba8c..
In_rec_iii_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
28408..
x0
x1
=
x0
x1
(
28408..
x0
)
(proof)
Definition
6f52e..
:=
λ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
λ x1 .
λ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
(
ι →
ι → ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι →
ι → ο
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
03431..
In_rec_iio
:=
λ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
λ x1 .
Descr_iio
(
6f52e..
x0
x1
)
Theorem
23f38..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι →
ι → ο
.
(
∀ x3 .
In
x3
x1
⟶
6f52e..
x0
x3
(
x2
x3
)
)
⟶
6f52e..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
75c04..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
6f52e..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι → ο
.
and
(
∀ x5 .
In
x5
x1
⟶
6f52e..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
09ec8..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
6f52e..
x0
x1
x2
⟶
6f52e..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
e071f..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6f52e..
x0
x1
(
03431..
x0
x1
)
(proof)
Theorem
dc49b..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6f52e..
x0
x1
(
x0
x1
(
03431..
x0
)
)
(proof)
Theorem
ee928..
In_rec_iio_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
03431..
x0
x1
=
x0
x1
(
03431..
x0
)
(proof)
Definition
6869c..
:=
λ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
f9c5e..
In_rec_Vo1
:=
λ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
λ x1 .
Descr_Vo1
(
6869c..
x0
x1
)
Theorem
98d06..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
In
x3
x1
⟶
6869c..
x0
x3
(
x2
x3
)
)
⟶
6869c..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
fc0f8..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ο
.
6869c..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
In
x5
x1
⟶
6869c..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
8511d..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι → ο
.
6869c..
x0
x1
x2
⟶
6869c..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
a9e6e..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6869c..
x0
x1
(
f9c5e..
x0
x1
)
(proof)
Theorem
d502e..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6869c..
x0
x1
(
x0
x1
(
f9c5e..
x0
)
)
(proof)
Theorem
c87be..
In_rec_Vo1_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
f9c5e..
x0
x1
=
x0
x1
(
f9c5e..
x0
)
(proof)
Definition
59843..
:=
λ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
c2908..
In_rec_Vo2
:=
λ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
λ x1 .
Descr_Vo2
(
59843..
x0
x1
)
Theorem
9be4c..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x3 .
In
x3
x1
⟶
59843..
x0
x3
(
x2
x3
)
)
⟶
59843..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
1e053..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
59843..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
(
ι → ο
)
→ ο
.
and
(
∀ x5 .
In
x5
x1
⟶
59843..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
edb50..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
59843..
x0
x1
x2
⟶
59843..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
56b05..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
59843..
x0
x1
(
c2908..
x0
x1
)
(proof)
Theorem
71f3a..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
59843..
x0
x1
(
x0
x1
(
c2908..
x0
)
)
(proof)
Theorem
61a08..
In_rec_Vo2_eq
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
c2908..
x0
x1
=
x0
x1
(
c2908..
x0
)
(proof)
Definition
31b02..
:=
λ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 .
λ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x3 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
2bbaf..
In_rec_Vo3
:=
λ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 .
Descr_Vo3
(
31b02..
x0
x1
)
Theorem
9bae8..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x3 .
In
x3
x1
⟶
31b02..
x0
x3
(
x2
x3
)
)
⟶
31b02..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
8ac8a..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
31b02..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
and
(
∀ x5 .
In
x5
x1
⟶
31b02..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
e33bc..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
31b02..
x0
x1
x2
⟶
31b02..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
b5998..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
31b02..
x0
x1
(
2bbaf..
x0
x1
)
(proof)
Theorem
9f3e1..
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
31b02..
x0
x1
(
x0
x1
(
2bbaf..
x0
)
)
(proof)
Theorem
32d2e..
In_rec_Vo3_eq
:
∀ x0 :
ι →
(
ι →
(
(
ι → ο
)
→ ο
)
→ ο
)
→
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
2bbaf..
x0
x1
=
x0
x1
(
2bbaf..
x0
)
(proof)
Definition
77406..
:=
λ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
λ x1 .
λ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
∀ x3 :
ι →
(
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x6 .
In
x6
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
59fb5..
In_rec_Vo4
:=
λ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
λ x1 .
Descr_Vo4
(
77406..
x0
x1
)
Theorem
57125..
:
∀ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x3 .
In
x3
x1
⟶
77406..
x0
x3
(
x2
x3
)
)
⟶
77406..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
a7e02..
:
∀ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
77406..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
and
(
∀ x5 .
In
x5
x1
⟶
77406..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
6dbd6..
:
∀ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
77406..
x0
x1
x2
⟶
77406..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
8a2fc..
:
∀ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
77406..
x0
x1
(
59fb5..
x0
x1
)
(proof)
Theorem
6fbc8..
:
∀ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
77406..
x0
x1
(
x0
x1
(
59fb5..
x0
)
)
(proof)
Theorem
c6e41..
In_rec_Vo4_eq
:
∀ x0 :
ι →
(
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
59fb5..
x0
x1
=
x0
x1
(
59fb5..
x0
)
(proof)
Definition
1ce4f..
incl_0_1
:=
λ x0 x1 .
In
x1
x0
Definition
d97e3..
In_1
:=
λ x0 x1 :
ι → ο
.
∀ x2 : ο .
(
∀ x3 .
and
(
x0
=
1ce4f..
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
Definition
407b5..
incl_1_2
:=
λ x0 x1 :
ι → ο
.
d97e3..
x1
x0
Definition
3a6d0..
In_2
:=
λ x0 x1 :
(
ι → ο
)
→ ο
.
∀ x2 : ο .
(
∀ x3 :
ι → ο
.
and
(
x0
=
407b5..
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
Definition
a4b00..
incl_2_3
:=
λ x0 x1 :
(
ι → ο
)
→ ο
.
3a6d0..
x1
x0
Definition
e6217..
In_3
:=
λ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x2 : ο .
(
∀ x3 :
(
ι → ο
)
→ ο
.
and
(
x0
=
a4b00..
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
Definition
a327b..
incl_3_4
:=
λ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x1
x0
Definition
8fddf..
In_4
:=
λ x0 x1 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
∀ x2 : ο .
(
∀ x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
and
(
x0
=
a327b..
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
Theorem
289f7..
In_1_I
:
∀ x0 .
∀ x1 :
ι → ο
.
x1
x0
⟶
d97e3..
(
1ce4f..
x0
)
x1
(proof)
Theorem
4487e..
In_1_E
:
∀ x0 x1 :
ι → ο
.
d97e3..
x0
x1
⟶
∀ x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 .
x1
x3
⟶
x2
(
1ce4f..
x3
)
)
⟶
x2
x0
(proof)
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Theorem
c0781..
incl_0_1_inj
:
∀ x0 x1 .
1ce4f..
x0
=
1ce4f..
x1
⟶
x0
=
x1
(proof)
Theorem
8bd78..
In_1_up
:
∀ x0 x1 .
In
x0
x1
⟶
d97e3..
(
1ce4f..
x0
)
(
1ce4f..
x1
)
(proof)
Theorem
3172a..
In_1_down
:
∀ x0 x1 .
d97e3..
(
1ce4f..
x0
)
(
1ce4f..
x1
)
⟶
In
x0
x1
(proof)
Theorem
5b9f0..
In_2_I
:
∀ x0 :
ι → ο
.
∀ x1 :
(
ι → ο
)
→ ο
.
x1
x0
⟶
3a6d0..
(
407b5..
x0
)
x1
(proof)
Theorem
724a1..
In_2_E
:
∀ x0 x1 :
(
ι → ο
)
→ ο
.
3a6d0..
x0
x1
⟶
∀ x2 :
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
x1
x3
⟶
x2
(
407b5..
x3
)
)
⟶
x2
x0
(proof)
Theorem
94a3d..
incl_1_2_inj
:
∀ x0 x1 :
ι → ο
.
407b5..
x0
=
407b5..
x1
⟶
x0
=
x1
(proof)
Theorem
9b744..
In_2_up
:
∀ x0 x1 :
ι → ο
.
d97e3..
x0
x1
⟶
3a6d0..
(
407b5..
x0
)
(
407b5..
x1
)
(proof)
Theorem
d6cc7..
In_2_down
:
∀ x0 x1 :
ι → ο
.
3a6d0..
(
407b5..
x0
)
(
407b5..
x1
)
⟶
d97e3..
x0
x1
(proof)
Theorem
7abdf..
In_3_I
:
∀ x0 :
(
ι → ο
)
→ ο
.
∀ x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x1
x0
⟶
e6217..
(
a4b00..
x0
)
x1
(proof)
Theorem
af1a5..
In_3_E
:
∀ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x0
x1
⟶
∀ x2 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x3 :
(
ι → ο
)
→ ο
.
x1
x3
⟶
x2
(
a4b00..
x3
)
)
⟶
x2
x0
(proof)
Theorem
ea98f..
incl_2_3_inj
:
∀ x0 x1 :
(
ι → ο
)
→ ο
.
a4b00..
x0
=
a4b00..
x1
⟶
x0
=
x1
(proof)
Theorem
37ad7..
In_3_up
:
∀ x0 x1 :
(
ι → ο
)
→ ο
.
3a6d0..
x0
x1
⟶
e6217..
(
a4b00..
x0
)
(
a4b00..
x1
)
(proof)
Theorem
db604..
In_3_down
:
∀ x0 x1 :
(
ι → ο
)
→ ο
.
e6217..
(
a4b00..
x0
)
(
a4b00..
x1
)
⟶
3a6d0..
x0
x1
(proof)
Theorem
483c0..
In_4_I
:
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
∀ x1 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
x1
x0
⟶
8fddf..
(
a327b..
x0
)
x1
(proof)
Theorem
272c7..
In_4_E
:
∀ x0 x1 :
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
.
8fddf..
x0
x1
⟶
∀ x2 :
(
(
(
(
ι → ο
)
→ ο
)
→ ο
)
→ ο
)
→ ο
.
(
∀ x3 :
(
(
ι → ο
)
→ ο
)
→ ο
.
x1
x3
⟶
x2
(
a327b..
x3
)
)
⟶
x2
x0
(proof)
Theorem
79850..
incl_3_4_inj
:
∀ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
a327b..
x0
=
a327b..
x1
⟶
x0
=
x1
(proof)
Theorem
b7736..
In_4_up
:
∀ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
e6217..
x0
x1
⟶
8fddf..
(
a327b..
x0
)
(
a327b..
x1
)
(proof)
Theorem
edf38..
In_4_down
:
∀ x0 x1 :
(
(
ι → ο
)
→ ο
)
→ ο
.
8fddf..
(
a327b..
x0
)
(
a327b..
x1
)
⟶
e6217..
x0
x1
(proof)