Search for blocks/addresses/...
Proofgold Asset
asset id
24fecfb790db2b36871611f14b7e14116d9c358f27827da1c29ff4ac4bc14286
asset hash
6a59fd6ad10b6b4b2a5a171b563f8bb5b60ecf22c80e1bf292c730343fc0ae54
bday / block
28161
tx
50e9d..
preasset
doc published by
PrQUS..
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
e9c39..
:=
λ x0 x1 x2 .
binunion
x1
{
SetAdjoin
x3
(
Sing
x0
)
|x3 ∈
x2
}
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
ad280..
:=
e9c39..
2
Known
43bcd..
:
∀ x0 .
ad280..
x0
0
=
x0
Param
SNo
SNo
:
ι
→
ο
Known
8ae5d..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x2
⟶
ad280..
x0
x1
=
ad280..
x2
x3
⟶
x0
=
x2
Known
943f5..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
ad280..
x0
x1
=
ad280..
x2
x3
⟶
x1
=
x3
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
c7ce4..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
x0
=
ad280..
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
e4080..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
c7ce4..
(
ad280..
x0
x1
)
Known
3577c..
:
∀ x0 .
c7ce4..
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
SNo
x2
⟶
SNo
x3
⟶
x0
=
ad280..
x2
x3
⟶
x1
(
ad280..
x2
x3
)
)
⟶
x1
x0
Definition
8d0f8..
:=
ad280..
0
1
Definition
28f8d..
:=
λ x0 .
prim0
(
λ x1 .
and
(
SNo
x1
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
x0
=
ad280..
x1
x3
)
⟶
x2
)
⟶
x2
)
)
Definition
d634d..
:=
λ x0 .
prim0
(
λ x1 .
and
(
SNo
x1
)
(
x0
=
ad280..
(
28f8d..
x0
)
x1
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
95e88..
:
∀ x0 .
c7ce4..
x0
⟶
and
(
SNo
(
28f8d..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
x0
=
ad280..
(
28f8d..
x0
)
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
1c01b..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
28f8d..
(
ad280..
x0
x1
)
=
x0
(proof)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
4aab3..
:
∀ x0 .
c7ce4..
x0
⟶
and
(
SNo
(
d634d..
x0
)
)
(
x0
=
ad280..
(
28f8d..
x0
)
(
d634d..
x0
)
)
(proof)
Theorem
5b520..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
d634d..
(
ad280..
x0
x1
)
=
x1
(proof)
Theorem
85533..
:
∀ x0 .
c7ce4..
x0
⟶
SNo
(
28f8d..
x0
)
(proof)
Theorem
eb0da..
:
∀ x0 .
c7ce4..
x0
⟶
SNo
(
d634d..
x0
)
(proof)
Theorem
68e0b..
:
∀ x0 .
c7ce4..
x0
⟶
x0
=
ad280..
(
28f8d..
x0
)
(
d634d..
x0
)
(proof)
Theorem
371c6..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
28f8d..
x0
=
28f8d..
x1
⟶
d634d..
x0
=
d634d..
x1
⟶
x0
=
x1
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
b1848..
:=
λ x0 .
ad280..
(
minus_SNo
(
28f8d..
x0
)
)
(
minus_SNo
(
d634d..
x0
)
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Definition
a0628..
:=
λ x0 x1 .
ad280..
(
add_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
add_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Definition
22598..
:=
λ x0 x1 .
ad280..
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
)
(
minus_SNo
(
mul_SNo
(
d634d..
x0
)
(
d634d..
x1
)
)
)
)
(
add_SNo
(
mul_SNo
(
28f8d..
x0
)
(
d634d..
x1
)
)
(
mul_SNo
(
d634d..
x0
)
(
28f8d..
x1
)
)
)
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Definition
41fb9..
:=
λ x0 .
ad280..
(
div_SNo
(
28f8d..
x0
)
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
)
(
minus_SNo
(
div_SNo
(
d634d..
x0
)
(
add_SNo
(
exp_SNo_nat
(
28f8d..
x0
)
2
)
(
exp_SNo_nat
(
d634d..
x0
)
2
)
)
)
)
Definition
74066..
:=
λ x0 x1 .
22598..
x0
(
41fb9..
x1
)
Known
SNo_0
SNo_0
:
SNo
0
Known
SNo_1
SNo_1
:
SNo
1
Theorem
3e3aa..
:
c7ce4..
8d0f8..
(proof)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Theorem
d3d48..
:
∀ x0 .
c7ce4..
x0
⟶
28f8d..
(
b1848..
x0
)
=
minus_SNo
(
28f8d..
x0
)
(proof)
Theorem
d1304..
:
∀ x0 .
c7ce4..
x0
⟶
d634d..
(
b1848..
x0
)
=
minus_SNo
(
d634d..
x0
)
(proof)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Theorem
5576f..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
28f8d..
(
a0628..
x0
x1
)
=
add_SNo
(
28f8d..
x0
)
(
28f8d..
x1
)
(proof)
Theorem
9325f..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
d634d..
(
a0628..
x0
x1
)
=
add_SNo
(
d634d..
x0
)
(
d634d..
x1
)
(proof)
Theorem
76017..
:
∀ x0 .
c7ce4..
x0
⟶
c7ce4..
(
b1848..
x0
)
(proof)
Theorem
416cf..
:
∀ x0 .
SNo
x0
⟶
28f8d..
x0
=
x0
(proof)
Theorem
0de29..
:
∀ x0 .
SNo
x0
⟶
d634d..
x0
=
0
(proof)
Theorem
6c4fc..
:
28f8d..
0
=
0
(proof)
Theorem
1c92a..
:
d634d..
0
=
0
(proof)
Theorem
7d0dc..
:
28f8d..
1
=
1
(proof)
Theorem
d3315..
:
d634d..
1
=
0
(proof)
Theorem
f16c1..
:
28f8d..
8d0f8..
=
0
(proof)
Theorem
b2ead..
:
d634d..
8d0f8..
=
1
(proof)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Theorem
db996..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
a0628..
x0
x1
(proof)
Theorem
33aee..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
(
a0628..
x0
x1
)
(proof)
Theorem
5e04b..
:
∀ x0 .
c7ce4..
x0
⟶
a0628..
0
x0
=
x0
(proof)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Theorem
4b639..
:
∀ x0 .
c7ce4..
x0
⟶
a0628..
x0
0
=
x0
(proof)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Theorem
c369e..
:
∀ x0 .
c7ce4..
x0
⟶
a0628..
(
b1848..
x0
)
x0
=
0
(proof)
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Theorem
6cc17..
:
∀ x0 .
c7ce4..
x0
⟶
a0628..
x0
(
b1848..
x0
)
=
0
(proof)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Theorem
61bcd..
:
∀ x0 .
SNo
x0
⟶
minus_SNo
x0
=
b1848..
x0
(proof)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Theorem
256a7..
:
∀ x0 x1 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
a0628..
x0
x1
=
a0628..
x1
x0
(proof)
Known
f_eq_i
f_eq_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x1
=
x0
x2
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Theorem
052e0..
:
∀ x0 x1 x2 .
c7ce4..
x0
⟶
c7ce4..
x1
⟶
c7ce4..
x2
⟶
a0628..
x0
(
a0628..
x1
x2
)
=
a0628..
(
a0628..
x0
x1
)
x2
(proof)