Search for blocks/addresses/...

Proofgold Asset

asset id
24fecfb790db2b36871611f14b7e14116d9c358f27827da1c29ff4ac4bc14286
asset hash
6a59fd6ad10b6b4b2a5a171b563f8bb5b60ecf22c80e1bf292c730343fc0ae54
bday / block
28161
tx
50e9d..
preasset
doc published by PrQUS..
Param binunionbinunion : ιιι
Param SetAdjoinSetAdjoin : ιιι
Param SingSing : ιι
Definition e9c39.. := λ x0 x1 x2 . binunion x1 {SetAdjoin x3 (Sing x0)|x3 ∈ x2}
Param ordsuccordsucc : ιι
Definition ad280.. := e9c39.. 2
Known 43bcd.. : ∀ x0 . ad280.. x0 0 = x0
Param SNoSNo : ιο
Known 8ae5d.. : ∀ x0 x1 x2 x3 . SNo x0SNo x2ad280.. x0 x1 = ad280.. x2 x3x0 = x2
Known 943f5.. : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3ad280.. x0 x1 = ad280.. x2 x3x1 = x3
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition c7ce4.. := λ x0 . ∀ x1 : ο . (∀ x2 . and (SNo x2) (∀ x3 : ο . (∀ x4 . and (SNo x4) (x0 = ad280.. x2 x4)x3)x3)x1)x1
Known e4080.. : ∀ x0 x1 . SNo x0SNo x1c7ce4.. (ad280.. x0 x1)
Known 3577c.. : ∀ x0 . c7ce4.. x0∀ x1 : ι → ο . (∀ x2 x3 . SNo x2SNo x3x0 = ad280.. x2 x3x1 (ad280.. x2 x3))x1 x0
Definition 8d0f8.. := ad280.. 0 1
Definition 28f8d.. := λ x0 . prim0 (λ x1 . and (SNo x1) (∀ x2 : ο . (∀ x3 . and (SNo x3) (x0 = ad280.. x1 x3)x2)x2))
Definition d634d.. := λ x0 . prim0 (λ x1 . and (SNo x1) (x0 = ad280.. (28f8d.. x0) x1))
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem 95e88.. : ∀ x0 . c7ce4.. x0and (SNo (28f8d.. x0)) (∀ x1 : ο . (∀ x2 . and (SNo x2) (x0 = ad280.. (28f8d.. x0) x2)x1)x1) (proof)
Theorem 1c01b.. : ∀ x0 x1 . SNo x0SNo x128f8d.. (ad280.. x0 x1) = x0 (proof)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 4aab3.. : ∀ x0 . c7ce4.. x0and (SNo (d634d.. x0)) (x0 = ad280.. (28f8d.. x0) (d634d.. x0)) (proof)
Theorem 5b520.. : ∀ x0 x1 . SNo x0SNo x1d634d.. (ad280.. x0 x1) = x1 (proof)
Theorem 85533.. : ∀ x0 . c7ce4.. x0SNo (28f8d.. x0) (proof)
Theorem eb0da.. : ∀ x0 . c7ce4.. x0SNo (d634d.. x0) (proof)
Theorem 68e0b.. : ∀ x0 . c7ce4.. x0x0 = ad280.. (28f8d.. x0) (d634d.. x0) (proof)
Theorem 371c6.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x128f8d.. x0 = 28f8d.. x1d634d.. x0 = d634d.. x1x0 = x1 (proof)
Param minus_SNominus_SNo : ιι
Definition b1848.. := λ x0 . ad280.. (minus_SNo (28f8d.. x0)) (minus_SNo (d634d.. x0))
Param add_SNoadd_SNo : ιιι
Definition a0628.. := λ x0 x1 . ad280.. (add_SNo (28f8d.. x0) (28f8d.. x1)) (add_SNo (d634d.. x0) (d634d.. x1))
Param mul_SNomul_SNo : ιιι
Definition 22598.. := λ x0 x1 . ad280.. (add_SNo (mul_SNo (28f8d.. x0) (28f8d.. x1)) (minus_SNo (mul_SNo (d634d.. x0) (d634d.. x1)))) (add_SNo (mul_SNo (28f8d.. x0) (d634d.. x1)) (mul_SNo (d634d.. x0) (28f8d.. x1)))
Param div_SNodiv_SNo : ιιι
Param exp_SNo_natexp_SNo_nat : ιιι
Definition 41fb9.. := λ x0 . ad280.. (div_SNo (28f8d.. x0) (add_SNo (exp_SNo_nat (28f8d.. x0) 2) (exp_SNo_nat (d634d.. x0) 2))) (minus_SNo (div_SNo (d634d.. x0) (add_SNo (exp_SNo_nat (28f8d.. x0) 2) (exp_SNo_nat (d634d.. x0) 2))))
Definition 74066.. := λ x0 x1 . 22598.. x0 (41fb9.. x1)
Known SNo_0SNo_0 : SNo 0
Known SNo_1SNo_1 : SNo 1
Theorem 3e3aa.. : c7ce4.. 8d0f8.. (proof)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Theorem d3d48.. : ∀ x0 . c7ce4.. x028f8d.. (b1848.. x0) = minus_SNo (28f8d.. x0) (proof)
Theorem d1304.. : ∀ x0 . c7ce4.. x0d634d.. (b1848.. x0) = minus_SNo (d634d.. x0) (proof)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Theorem 5576f.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x128f8d.. (a0628.. x0 x1) = add_SNo (28f8d.. x0) (28f8d.. x1) (proof)
Theorem 9325f.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1d634d.. (a0628.. x0 x1) = add_SNo (d634d.. x0) (d634d.. x1) (proof)
Theorem 76017.. : ∀ x0 . c7ce4.. x0c7ce4.. (b1848.. x0) (proof)
Theorem 416cf.. : ∀ x0 . SNo x028f8d.. x0 = x0 (proof)
Theorem 0de29.. : ∀ x0 . SNo x0d634d.. x0 = 0 (proof)
Theorem 6c4fc.. : 28f8d.. 0 = 0 (proof)
Theorem 1c92a.. : d634d.. 0 = 0 (proof)
Theorem 7d0dc.. : 28f8d.. 1 = 1 (proof)
Theorem d3315.. : d634d.. 1 = 0 (proof)
Theorem f16c1.. : 28f8d.. 8d0f8.. = 0 (proof)
Theorem b2ead.. : d634d.. 8d0f8.. = 1 (proof)
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Theorem db996.. : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = a0628.. x0 x1 (proof)
Theorem 33aee.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1c7ce4.. (a0628.. x0 x1) (proof)
Theorem 5e04b.. : ∀ x0 . c7ce4.. x0a0628.. 0 x0 = x0 (proof)
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Theorem 4b639.. : ∀ x0 . c7ce4.. x0a0628.. x0 0 = x0 (proof)
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Theorem c369e.. : ∀ x0 . c7ce4.. x0a0628.. (b1848.. x0) x0 = 0 (proof)
Known add_SNo_minus_SNo_rinvadd_SNo_minus_SNo_rinv : ∀ x0 . SNo x0add_SNo x0 (minus_SNo x0) = 0
Theorem 6cc17.. : ∀ x0 . c7ce4.. x0a0628.. x0 (b1848.. x0) = 0 (proof)
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Theorem 61bcd.. : ∀ x0 . SNo x0minus_SNo x0 = b1848.. x0 (proof)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Theorem 256a7.. : ∀ x0 x1 . c7ce4.. x0c7ce4.. x1a0628.. x0 x1 = a0628.. x1 x0 (proof)
Known f_eq_if_eq_i : ∀ x0 : ι → ι . ∀ x1 x2 . x1 = x2x0 x1 = x0 x2
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Theorem 052e0.. : ∀ x0 x1 x2 . c7ce4.. x0c7ce4.. x1c7ce4.. x2a0628.. x0 (a0628.. x1 x2) = a0628.. (a0628.. x0 x1) x2 (proof)