Search for blocks/addresses/...
Proofgold Asset
asset id
25f4eb7ebdb0dbd4f3d7f93144d13fc9f73468f87a0ef37e2f6b0d9ff7002ca5
asset hash
4916472240cc5314862cdf544969434110c951c7e2a68da86fe12d26f3f2ce9a
bday / block
3812
tx
7e579..
preasset
doc published by
PrGxv..
Theorem
f_eq_i
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
x1
=
x2
⟶
x0
x1
=
x0
x2
(proof)
Theorem
f_eq_i_i
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 x3 x4 .
x1
=
x2
⟶
x3
=
x4
⟶
x0
x1
x3
=
x0
x2
x4
(proof)
Param
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Param
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x3
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
prim1
x1
x0
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
prim1
(
x4
x6
x7
)
x0
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
prim1
x2
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
prim1
x8
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Known
explicit_Field_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
Known
explicit_Field_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x0
Known
explicit_Field_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x3
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x1
Theorem
explicit_Field_minus_zero
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
(proof)
Theorem
explicit_Field_dist_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
(proof)
Known
explicit_Field_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x5
=
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x5
Known
explicit_Field_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
prim1
(
explicit_Field_minus
x0
x1
x2
x3
x4
x2
)
x0
Theorem
explicit_Field_minus_plus_dist
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
(
x3
x5
x6
)
=
x3
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
(proof)
Theorem
explicit_Field_minus_mult_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
x6
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
(proof)
Theorem
explicit_Field_minus_mult_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
=
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x5
x6
)
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
explicit_Field_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x1
x5
=
x1
Theorem
explicit_Field_square_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
x5
x5
=
x1
⟶
x5
=
x1
(proof)
Param
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
explicit_OrderedField_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
x8
x9
⟶
x5
x7
x9
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
and
(
x5
x7
x8
)
(
x5
x8
x7
)
)
(
x7
=
x8
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
or
(
x5
x7
x8
)
(
x5
x8
x7
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x5
x7
x8
⟶
x5
(
x3
x7
x9
)
(
x3
x8
x9
)
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x5
x1
x7
⟶
x5
x1
x8
⟶
x5
x1
(
x4
x7
x8
)
)
⟶
x6
)
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
x6
Theorem
explicit_OrderedField_minus_leq
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x6
x7
⟶
x5
(
explicit_Field_minus
x0
x1
x2
x3
x4
x7
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x6
)
(proof)
Known
explicit_Field_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Field
x0
x1
x2
x3
x4
⟶
∀ x5 .
prim1
x5
x0
⟶
x4
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
x5
)
=
x4
x5
x5
Theorem
explicit_OrderedField_square_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
x5
x1
(
x4
x6
x6
)
(proof)
Theorem
explicit_OrderedField_sum_squares_nonneg
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
(
x3
(
x4
x6
x6
)
(
x4
x7
x7
)
)
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
d0148..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x3
x6
x7
=
x1
⟶
x7
=
x1
(proof)
Theorem
explicit_OrderedField_sum_nonneg_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x5
x1
x6
⟶
x5
x1
x7
⟶
x3
x6
x7
=
x1
⟶
and
(
x6
=
x1
)
(
x7
=
x1
)
(proof)
Theorem
explicit_OrderedField_sum_squares_zero_inv
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
x3
(
x4
x6
x6
)
(
x4
x7
x7
)
=
x1
⟶
and
(
x6
=
x1
)
(
x7
=
x1
)
(proof)