Search for blocks/addresses/...
Proofgold Asset
asset id
26905e56504040e6388a87daed709f7256b046623266271e995b2fc438917913
asset hash
eb4a0fc35ad9b9ca5726506afa9feb165514d410d7575cca25f38f913b1e8949
bday / block
1745
tx
a68ac..
preasset
doc published by
PrGxv..
Definition
False
:=
∀ x0 : ο .
x0
Definition
True
:=
∀ x0 : ο .
x0
⟶
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
FalseE
:
False
⟶
∀ x0 : ο .
x0
(proof)
Theorem
TrueI
:
True
(proof)
Theorem
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
(proof)
Theorem
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
(proof)
Theorem
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
(proof)
Theorem
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
(proof)
Theorem
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
(proof)
Theorem
orE
:
∀ x0 x1 x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
or
x0
x1
⟶
x2
(proof)
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Theorem
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
(proof)
Theorem
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
(proof)
Theorem
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
(proof)
Theorem
iff_refl
:
∀ x0 : ο .
iff
x0
x0
(proof)
Known
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
pred_ext_2
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
x0
x2
⟶
x1
x2
)
⟶
(
∀ x2 .
x1
x2
⟶
x0
x2
)
⟶
x0
=
x1
(proof)
Theorem
pred_ext
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 .
iff
(
x0
x2
)
(
x1
x2
)
)
⟶
x0
=
x1
(proof)
Definition
8ac9a..
:=
λ x0 .
False
Definition
de327..
:=
λ x0 :
ι → ο
.
λ x1 x2 .
or
(
x0
x2
)
(
x2
=
x1
)
Theorem
0998e..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
x0
x2
⟶
de327..
x0
x1
x2
(proof)
Theorem
f147c..
:
∀ x0 :
ι → ο
.
∀ x1 .
de327..
x0
x1
x1
(proof)
Theorem
8bcd6..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
de327..
x0
x1
x2
⟶
∀ x3 : ο .
(
x0
x2
⟶
x3
)
⟶
(
x2
=
x1
⟶
x3
)
⟶
x3
(proof)