Search for blocks/addresses/...
Proofgold Asset
asset id
5e8d1153cc5934af91575cdb3734ffd71c5bbff395ba6ce4bef1eff7882e1a24
asset hash
2906d8c9028857aa62fae0ed7c795af93380b8dcfb001921eb2f7f7b01ea7b90
bday / block
35845
tx
70c0a..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
180f5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
x0
x2
x4
⟶
x0
x3
x4
⟶
x5
)
⟶
x5
Definition
45422..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
180f5..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
x0
x3
x5
⟶
not
(
x0
x4
x5
)
⟶
x6
)
⟶
x6
Definition
85e71..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
45422..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
not
(
x0
x2
x6
)
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
843b8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
85e71..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
bd6bc..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
843b8..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
x0
x7
x8
⟶
x9
)
⟶
x9
Definition
8b6ad..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x5
)
⟶
x5
Definition
c5756..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
02ade..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
not
(
x0
x4
x6
)
⟶
x0
x5
x6
⟶
x7
)
⟶
x7
Definition
b0193..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
02ade..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
55a2d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
b0193..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
3fca5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
55a2d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
not
(
x0
x8
x9
)
⟶
x10
)
⟶
x10
Definition
2b028..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
x0
x2
x5
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
9ab39..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
2b028..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
2319a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
49663..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
2319a..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
356c7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
49663..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
468d8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
3b6e0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
468d8..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
95ba7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
3b6e0..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
6d3ff..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
2319a..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
ad740..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
6d3ff..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
ba720..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
28532..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
ba720..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
db72f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
28532..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
803e1..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
db72f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
f831d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
18ba2..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f831d..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
ac04a..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
18ba2..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
a94a5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
ac04a..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
da3f2..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
28532..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
x0
x3
x8
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
e1aab..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
da3f2..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
3da93..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
18ba2..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
21189..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
3da93..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
7f522..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
24054..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
7f522..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
fb26f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
24054..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
1c500..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
x0
x6
x7
⟶
x8
)
⟶
x8
Definition
25f2f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
1c500..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
2dac5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
25f2f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
9a85f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
468d8..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
bfd4f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
9a85f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
13b0f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
24019..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
13b0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
e13e5..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
24019..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
1c6d8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
2319a..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
x0
x1
x8
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
cc7e8..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
1c6d8..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
ae506..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
9ab39..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
5b060..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
ae506..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
f4940..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
5b060..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
f8709..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
27260..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
dfcf9..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
27260..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
76a6c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
dfcf9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
3749e..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
bd6bc..
x2
x4
x5
x6
x7
x8
x9
x10
x11
⟶
∀ x12 : ο .
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
x12
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
x2
x4
x3
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
x2
x7
x3
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
not
(
x2
x5
x3
)
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
x2
x9
x3
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
x12
)
⟶
x12
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
be80a..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
bd6bc..
x2
x4
x5
x6
x7
x8
x9
x10
x11
⟶
∀ x12 : ο .
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
3fca5..
x2
x13
x14
x3
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
356c7..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
95ba7..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
ad740..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
803e1..
x2
x13
x14
x3
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
a94a5..
x2
x13
x14
x15
x3
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
e1aab..
x2
x13
x14
x3
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
21189..
x2
x13
x14
x15
x3
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
fb26f..
x2
x13
x14
x15
x16
x17
x18
x3
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
2dac5..
x2
x13
x14
x15
x3
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
bfd4f..
x2
x13
x3
x14
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
e13e5..
x2
x13
x14
x15
x3
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
cc7e8..
x2
x3
x13
x14
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
f4940..
x2
x3
x13
x14
x15
x16
x17
x18
x19
x20
⟶
x12
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
76a6c..
x2
x13
x14
x15
x16
x17
x18
x19
x3
x20
⟶
x12
)
⟶
x12
(proof)