Search for blocks/addresses/...
Proofgold Asset
asset id
3085989f3513e2261f7762657c892fab2cf707509cb6f6188789a608dcfe3f00
asset hash
404b80f39777b2cb57801ee66a5f5e4a9f2c8058180915f1123719f232fc4d74
bday / block
27960
tx
47bc9..
preasset
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
exp_SNo_nat_S
exp_SNo_nat_S
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
exp_SNo_nat
x0
(
ordsucc
x1
)
=
mul_SNo
x0
(
exp_SNo_nat
x0
x1
)
Known
nat_1
nat_1
:
nat_p
1
Known
exp_SNo_nat_1
exp_SNo_nat_1
:
∀ x0 .
SNo
x0
⟶
exp_SNo_nat
x0
1
=
x0
Theorem
exp_SNo_nat_2
exp_SNo_nat_2
:
∀ x0 .
SNo
x0
⟶
exp_SNo_nat
x0
2
=
mul_SNo
x0
x0
(proof)
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
SNo_sqr_nonneg
SNo_sqr_nonneg
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
(
mul_SNo
x0
x0
)
Theorem
SNo_sqr_nonneg'
SNo_sqr_nonneg
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
(
exp_SNo_nat
x0
2
)
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNo_zero_or_sqr_pos
SNo_zero_or_sqr_pos
:
∀ x0 .
SNo
x0
⟶
or
(
x0
=
0
)
(
SNoLt
0
(
mul_SNo
x0
x0
)
)
Theorem
SNo_zero_or_sqr_pos'
SNo_zero_or_sqr_pos
:
∀ x0 .
SNo
x0
⟶
or
(
x0
=
0
)
(
SNoLt
0
(
exp_SNo_nat
x0
2
)
)
(proof)
Param
SNo_pair
SNo_pair
:
ι
→
ι
→
ι
Param
recip_SNo
recip_SNo
:
ι
→
ι
Definition
div_SNo
div_SNo
:=
λ x0 x1 .
mul_SNo
x0
(
recip_SNo
x1
)
Param
CSNo_Re
CSNo_Re
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
CSNo_Im
CSNo_Im
:
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
cbf48..
:=
λ x0 .
SNo_pair
(
div_SNo
(
CSNo_Re
x0
)
(
add_SNo
(
exp_SNo_nat
(
CSNo_Re
x0
)
2
)
(
exp_SNo_nat
(
CSNo_Im
x0
)
2
)
)
)
(
minus_SNo
(
div_SNo
(
CSNo_Im
x0
)
(
add_SNo
(
exp_SNo_nat
(
CSNo_Re
x0
)
2
)
(
exp_SNo_nat
(
CSNo_Im
x0
)
2
)
)
)
)
Param
mul_CSNo
mul_CSNo
:
ι
→
ι
→
ι
Definition
bf082..
:=
λ x0 x1 .
mul_CSNo
x0
(
cbf48..
x1
)
Param
CSNo
CSNo
:
ι
→
ο
Known
1e9ba..
mul_CSNo_com
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
mul_CSNo
x0
x1
=
mul_CSNo
x1
x0
Known
ca69e..
CSNo_1
:
CSNo
1
Known
42258..
mul_CSNo_oneL
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
1
x0
=
x0
Theorem
10244..
:
∀ x0 .
CSNo
x0
⟶
mul_CSNo
x0
1
=
x0
(proof)
Known
CSNo_I
CSNo_I
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo
(
SNo_pair
x0
x1
)
Known
SNo_div_SNo
SNo_div_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
div_SNo
x0
x1
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_exp_SNo_nat
SNo_exp_SNo_nat
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNo
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Known
CSNo_ImR
CSNo_ImR
:
∀ x0 .
CSNo
x0
⟶
SNo
(
CSNo_Im
x0
)
Known
CSNo_ReR
CSNo_ReR
:
∀ x0 .
CSNo
x0
⟶
SNo
(
CSNo_Re
x0
)
Theorem
435ba..
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
cbf48..
x0
)
(proof)
Param
add_CSNo
add_CSNo
:
ι
→
ι
→
ι
Param
minus_CSNo
minus_CSNo
:
ι
→
ι
Param
Complex_i
Complex_i
:
ι
Known
15de6..
mul_SNo_mul_CSNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_CSNo
x0
x1
Known
CSNo_ReIm_split
CSNo_ReIm_split
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
x0
=
CSNo_Re
x1
⟶
CSNo_Im
x0
=
CSNo_Im
x1
⟶
x0
=
x1
Known
d8721..
CSNo_mul_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
mul_CSNo
x0
x1
)
Known
Re_1
Re_1
:
CSNo_Re
1
=
1
Known
a8c42..
mul_CSNo_CRe
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
(
mul_CSNo
x0
x1
)
=
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
)
(
minus_SNo
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
)
)
Known
15fd0..
add_CSNo_CRe
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Re
(
add_CSNo
x0
x1
)
=
add_SNo
(
CSNo_Re
x0
)
(
CSNo_Re
x1
)
Known
2fac0..
add_CSNo_CIm
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Im
(
add_CSNo
x0
x1
)
=
add_SNo
(
CSNo_Im
x0
)
(
CSNo_Im
x1
)
Known
31582..
minus_CSNo_CRe
:
∀ x0 .
CSNo
x0
⟶
CSNo_Re
(
minus_CSNo
x0
)
=
minus_SNo
(
CSNo_Re
x0
)
Known
4f721..
minus_CSNo_CIm
:
∀ x0 .
CSNo
x0
⟶
CSNo_Im
(
minus_CSNo
x0
)
=
minus_SNo
(
CSNo_Im
x0
)
Known
SNo_Re
SNo_Re
:
∀ x0 .
SNo
x0
⟶
CSNo_Re
x0
=
x0
Known
SNo_Im
SNo_Im
:
∀ x0 .
SNo
x0
⟶
CSNo_Im
x0
=
0
Known
SNo_Complex_i
SNo_Complex_i
:
CSNo
Complex_i
Known
2c425..
mul_CSNo_CIm
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo_Im
(
mul_CSNo
x0
x1
)
=
add_SNo
(
mul_SNo
(
CSNo_Re
x0
)
(
CSNo_Im
x1
)
)
(
mul_SNo
(
CSNo_Im
x0
)
(
CSNo_Re
x1
)
)
Known
Re_i
Re_i
:
CSNo_Re
Complex_i
=
0
Known
Im_i
Im_i
:
CSNo_Im
Complex_i
=
1
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
SNo_0
SNo_0
:
SNo
0
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
SNo_1
SNo_1
:
SNo
1
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
mul_SNo_com_3_0_1
mul_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
x1
(
mul_SNo
x0
x2
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
Im_1
Im_1
:
CSNo_Im
1
=
0
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Known
SNo_mul_SNo_3
SNo_mul_SNo_3
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
(
mul_SNo
x0
(
mul_SNo
x1
x2
)
)
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
CSNo_add_CSNo
CSNo_add_CSNo
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
add_CSNo
x0
x1
)
Known
CSNo_minus_CSNo
CSNo_minus_CSNo
:
∀ x0 .
CSNo
x0
⟶
CSNo
(
minus_CSNo
x0
)
Known
SNo_CSNo
SNo_CSNo
:
∀ x0 .
SNo
x0
⟶
CSNo
x0
Theorem
da734..
:
∀ x0 .
CSNo
x0
⟶
∀ x1 .
SNo
x1
⟶
mul_SNo
(
add_SNo
(
exp_SNo_nat
(
CSNo_Re
x0
)
2
)
(
exp_SNo_nat
(
CSNo_Im
x0
)
2
)
)
x1
=
1
⟶
mul_CSNo
x0
(
add_CSNo
(
mul_CSNo
x1
(
CSNo_Re
x0
)
)
(
minus_CSNo
(
mul_CSNo
Complex_i
(
mul_CSNo
x1
(
CSNo_Im
x0
)
)
)
)
)
=
1
(proof)
Known
b5ed6..
CSNo_0
:
CSNo
0
Known
Re_0
Re_0
:
CSNo_Re
0
=
0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
Im_0
Im_0
:
CSNo_Im
0
=
0
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Theorem
8a0d1..
:
∀ x0 .
CSNo
x0
⟶
add_SNo
(
exp_SNo_nat
(
CSNo_Re
x0
)
2
)
(
exp_SNo_nat
(
CSNo_Im
x0
)
2
)
=
0
⟶
x0
=
0
(proof)
Known
CSNo_Re2
CSNo_Re2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo_Re
(
SNo_pair
x0
x1
)
=
x0
Known
CSNo_Im2
CSNo_Im2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
CSNo_Im
(
SNo_pair
x0
x1
)
=
x1
Known
recip_SNo_invR
recip_SNo_invR
:
∀ x0 .
SNo
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
mul_SNo
x0
(
recip_SNo
x0
)
=
1
Known
SNo_recip_SNo
SNo_recip_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
recip_SNo
x0
)
Theorem
7e4da..
:
∀ x0 .
CSNo
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
mul_CSNo
x0
(
cbf48..
x0
)
=
1
(proof)
Theorem
5ce1e..
:
∀ x0 .
CSNo
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
mul_CSNo
(
cbf48..
x0
)
x0
=
1
(proof)
Theorem
f57ff..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
(
bf082..
x0
x1
)
(proof)
Known
8912c..
mul_CSNo_assoc
:
∀ x0 x1 x2 .
CSNo
x0
⟶
CSNo
x1
⟶
CSNo
x2
⟶
mul_CSNo
x0
(
mul_CSNo
x1
x2
)
=
mul_CSNo
(
mul_CSNo
x0
x1
)
x2
Theorem
4f630..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
mul_CSNo
(
bf082..
x0
x1
)
x1
=
x0
(proof)
Theorem
5eaa5..
:
∀ x0 x1 .
CSNo
x0
⟶
CSNo
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
mul_CSNo
x1
(
bf082..
x0
x1
)
=
x0
(proof)
Param
complex
complex
:
ι
Param
real
real
:
ι
Known
complex_E
complex_E
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
real
⟶
∀ x3 .
x3
∈
real
⟶
x0
=
SNo_pair
x2
x3
⟶
x1
)
⟶
x1
Known
complex_I
complex_I
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
SNo_pair
x0
x1
∈
complex
Known
real_div_SNo
real_div_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
div_SNo
x0
x1
∈
real
Known
real_minus_SNo
real_minus_SNo
:
∀ x0 .
x0
∈
real
⟶
minus_SNo
x0
∈
real
Known
real_add_SNo
real_add_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
add_SNo
x0
x1
∈
real
Known
real_mul_SNo
real_mul_SNo
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
mul_SNo
x0
x1
∈
real
Known
complex_Im_eq
complex_Im_eq
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
CSNo_Im
(
SNo_pair
x0
x1
)
=
x1
Known
complex_Re_eq
complex_Re_eq
:
∀ x0 .
x0
∈
real
⟶
∀ x1 .
x1
∈
real
⟶
CSNo_Re
(
SNo_pair
x0
x1
)
=
x0
Known
complex_CSNo
complex_CSNo
:
∀ x0 .
x0
∈
complex
⟶
CSNo
x0
Theorem
4041d..
:
∀ x0 .
x0
∈
complex
⟶
cbf48..
x0
∈
complex
(proof)
Known
complex_mul_CSNo
complex_mul_CSNo
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
mul_CSNo
x0
x1
∈
complex
Theorem
e1c77..
:
∀ x0 .
x0
∈
complex
⟶
∀ x1 .
x1
∈
complex
⟶
bf082..
x0
x1
∈
complex
(proof)