Search for blocks/addresses/...

Proofgold Asset

asset id
3085989f3513e2261f7762657c892fab2cf707509cb6f6188789a608dcfe3f00
asset hash
404b80f39777b2cb57801ee66a5f5e4a9f2c8058180915f1123719f232fc4d74
bday / block
27960
tx
47bc9..
preasset
doc published by PrQUS..
Param SNoSNo : ιο
Param exp_SNo_natexp_SNo_nat : ιιι
Param ordsuccordsucc : ιι
Param mul_SNomul_SNo : ιιι
Param nat_pnat_p : ιο
Known exp_SNo_nat_Sexp_SNo_nat_S : ∀ x0 . SNo x0∀ x1 . nat_p x1exp_SNo_nat x0 (ordsucc x1) = mul_SNo x0 (exp_SNo_nat x0 x1)
Known nat_1nat_1 : nat_p 1
Known exp_SNo_nat_1exp_SNo_nat_1 : ∀ x0 . SNo x0exp_SNo_nat x0 1 = x0
Theorem exp_SNo_nat_2exp_SNo_nat_2 : ∀ x0 . SNo x0exp_SNo_nat x0 2 = mul_SNo x0 x0 (proof)
Param SNoLeSNoLe : ιιο
Known SNo_sqr_nonnegSNo_sqr_nonneg : ∀ x0 . SNo x0SNoLe 0 (mul_SNo x0 x0)
Theorem SNo_sqr_nonneg'SNo_sqr_nonneg : ∀ x0 . SNo x0SNoLe 0 (exp_SNo_nat x0 2) (proof)
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param SNoLtSNoLt : ιιο
Known SNo_zero_or_sqr_posSNo_zero_or_sqr_pos : ∀ x0 . SNo x0or (x0 = 0) (SNoLt 0 (mul_SNo x0 x0))
Theorem SNo_zero_or_sqr_pos'SNo_zero_or_sqr_pos : ∀ x0 . SNo x0or (x0 = 0) (SNoLt 0 (exp_SNo_nat x0 2)) (proof)
Param SNo_pairSNo_pair : ιιι
Param recip_SNorecip_SNo : ιι
Definition div_SNodiv_SNo := λ x0 x1 . mul_SNo x0 (recip_SNo x1)
Param CSNo_ReCSNo_Re : ιι
Param add_SNoadd_SNo : ιιι
Param CSNo_ImCSNo_Im : ιι
Param minus_SNominus_SNo : ιι
Definition cbf48.. := λ x0 . SNo_pair (div_SNo (CSNo_Re x0) (add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2))) (minus_SNo (div_SNo (CSNo_Im x0) (add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2))))
Param mul_CSNomul_CSNo : ιιι
Definition bf082.. := λ x0 x1 . mul_CSNo x0 (cbf48.. x1)
Param CSNoCSNo : ιο
Known 1e9ba..mul_CSNo_com : ∀ x0 x1 . CSNo x0CSNo x1mul_CSNo x0 x1 = mul_CSNo x1 x0
Known ca69e..CSNo_1 : CSNo 1
Known 42258..mul_CSNo_oneL : ∀ x0 . CSNo x0mul_CSNo 1 x0 = x0
Theorem 10244.. : ∀ x0 . CSNo x0mul_CSNo x0 1 = x0 (proof)
Known CSNo_ICSNo_I : ∀ x0 x1 . SNo x0SNo x1CSNo (SNo_pair x0 x1)
Known SNo_div_SNoSNo_div_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (div_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_exp_SNo_natSNo_exp_SNo_nat : ∀ x0 . SNo x0∀ x1 . nat_p x1SNo (exp_SNo_nat x0 x1)
Known nat_2nat_2 : nat_p 2
Known CSNo_ImRCSNo_ImR : ∀ x0 . CSNo x0SNo (CSNo_Im x0)
Known CSNo_ReRCSNo_ReR : ∀ x0 . CSNo x0SNo (CSNo_Re x0)
Theorem 435ba.. : ∀ x0 . CSNo x0CSNo (cbf48.. x0) (proof)
Param add_CSNoadd_CSNo : ιιι
Param minus_CSNominus_CSNo : ιι
Param Complex_iComplex_i : ι
Known 15de6..mul_SNo_mul_CSNo : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_CSNo x0 x1
Known CSNo_ReIm_splitCSNo_ReIm_split : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re x0 = CSNo_Re x1CSNo_Im x0 = CSNo_Im x1x0 = x1
Known d8721..CSNo_mul_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (mul_CSNo x0 x1)
Known Re_1Re_1 : CSNo_Re 1 = 1
Known a8c42..mul_CSNo_CRe : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re (mul_CSNo x0 x1) = add_SNo (mul_SNo (CSNo_Re x0) (CSNo_Re x1)) (minus_SNo (mul_SNo (CSNo_Im x0) (CSNo_Im x1)))
Known 15fd0..add_CSNo_CRe : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Re (add_CSNo x0 x1) = add_SNo (CSNo_Re x0) (CSNo_Re x1)
Known 2fac0..add_CSNo_CIm : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Im (add_CSNo x0 x1) = add_SNo (CSNo_Im x0) (CSNo_Im x1)
Known 31582..minus_CSNo_CRe : ∀ x0 . CSNo x0CSNo_Re (minus_CSNo x0) = minus_SNo (CSNo_Re x0)
Known 4f721..minus_CSNo_CIm : ∀ x0 . CSNo x0CSNo_Im (minus_CSNo x0) = minus_SNo (CSNo_Im x0)
Known SNo_ReSNo_Re : ∀ x0 . SNo x0CSNo_Re x0 = x0
Known SNo_ImSNo_Im : ∀ x0 . SNo x0CSNo_Im x0 = 0
Known SNo_Complex_iSNo_Complex_i : CSNo Complex_i
Known 2c425..mul_CSNo_CIm : ∀ x0 x1 . CSNo x0CSNo x1CSNo_Im (mul_CSNo x0 x1) = add_SNo (mul_SNo (CSNo_Re x0) (CSNo_Im x1)) (mul_SNo (CSNo_Im x0) (CSNo_Re x1))
Known Re_iRe_i : CSNo_Re Complex_i = 0
Known Im_iIm_i : CSNo_Im Complex_i = 1
Known mul_SNo_zeroRmul_SNo_zeroR : ∀ x0 . SNo x0mul_SNo x0 0 = 0
Known SNo_0SNo_0 : SNo 0
Known mul_SNo_zeroLmul_SNo_zeroL : ∀ x0 . SNo x0mul_SNo 0 x0 = 0
Known SNo_1SNo_1 : SNo 1
Known minus_SNo_0minus_SNo_0 : minus_SNo 0 = 0
Known add_SNo_0Ladd_SNo_0L : ∀ x0 . SNo x0add_SNo 0 x0 = x0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Known mul_SNo_oneLmul_SNo_oneL : ∀ x0 . SNo x0mul_SNo 1 x0 = x0
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known mul_SNo_com_3_0_1mul_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo x1 (mul_SNo x0 x2)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known Im_1Im_1 : CSNo_Im 1 = 0
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known SNo_mul_SNo_3SNo_mul_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (mul_SNo x0 (mul_SNo x1 x2))
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known CSNo_add_CSNoCSNo_add_CSNo : ∀ x0 x1 . CSNo x0CSNo x1CSNo (add_CSNo x0 x1)
Known CSNo_minus_CSNoCSNo_minus_CSNo : ∀ x0 . CSNo x0CSNo (minus_CSNo x0)
Known SNo_CSNoSNo_CSNo : ∀ x0 . SNo x0CSNo x0
Theorem da734.. : ∀ x0 . CSNo x0∀ x1 . SNo x1mul_SNo (add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2)) x1 = 1mul_CSNo x0 (add_CSNo (mul_CSNo x1 (CSNo_Re x0)) (minus_CSNo (mul_CSNo Complex_i (mul_CSNo x1 (CSNo_Im x0))))) = 1 (proof)
Known b5ed6..CSNo_0 : CSNo 0
Known Re_0Re_0 : CSNo_Re 0 = 0
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known SNoLt_irrefSNoLt_irref : ∀ x0 . not (SNoLt x0 x0)
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known Im_0Im_0 : CSNo_Im 0 = 0
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Theorem 8a0d1.. : ∀ x0 . CSNo x0add_SNo (exp_SNo_nat (CSNo_Re x0) 2) (exp_SNo_nat (CSNo_Im x0) 2) = 0x0 = 0 (proof)
Known CSNo_Re2CSNo_Re2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Re (SNo_pair x0 x1) = x0
Known CSNo_Im2CSNo_Im2 : ∀ x0 x1 . SNo x0SNo x1CSNo_Im (SNo_pair x0 x1) = x1
Known recip_SNo_invRrecip_SNo_invR : ∀ x0 . SNo x0(x0 = 0∀ x1 : ο . x1)mul_SNo x0 (recip_SNo x0) = 1
Known SNo_recip_SNoSNo_recip_SNo : ∀ x0 . SNo x0SNo (recip_SNo x0)
Theorem 7e4da.. : ∀ x0 . CSNo x0(x0 = 0∀ x1 : ο . x1)mul_CSNo x0 (cbf48.. x0) = 1 (proof)
Theorem 5ce1e.. : ∀ x0 . CSNo x0(x0 = 0∀ x1 : ο . x1)mul_CSNo (cbf48.. x0) x0 = 1 (proof)
Theorem f57ff.. : ∀ x0 x1 . CSNo x0CSNo x1CSNo (bf082.. x0 x1) (proof)
Known 8912c..mul_CSNo_assoc : ∀ x0 x1 x2 . CSNo x0CSNo x1CSNo x2mul_CSNo x0 (mul_CSNo x1 x2) = mul_CSNo (mul_CSNo x0 x1) x2
Theorem 4f630.. : ∀ x0 x1 . CSNo x0CSNo x1(x1 = 0∀ x2 : ο . x2)mul_CSNo (bf082.. x0 x1) x1 = x0 (proof)
Theorem 5eaa5.. : ∀ x0 x1 . CSNo x0CSNo x1(x1 = 0∀ x2 : ο . x2)mul_CSNo x1 (bf082.. x0 x1) = x0 (proof)
Param complexcomplex : ι
Param realreal : ι
Known complex_Ecomplex_E : ∀ x0 . x0complex∀ x1 : ο . (∀ x2 . x2real∀ x3 . x3realx0 = SNo_pair x2 x3x1)x1
Known complex_Icomplex_I : ∀ x0 . x0real∀ x1 . x1realSNo_pair x0 x1complex
Known real_div_SNoreal_div_SNo : ∀ x0 . x0real∀ x1 . x1realdiv_SNo x0 x1real
Known real_minus_SNoreal_minus_SNo : ∀ x0 . x0realminus_SNo x0real
Known real_add_SNoreal_add_SNo : ∀ x0 . x0real∀ x1 . x1realadd_SNo x0 x1real
Known real_mul_SNoreal_mul_SNo : ∀ x0 . x0real∀ x1 . x1realmul_SNo x0 x1real
Known complex_Im_eqcomplex_Im_eq : ∀ x0 . x0real∀ x1 . x1realCSNo_Im (SNo_pair x0 x1) = x1
Known complex_Re_eqcomplex_Re_eq : ∀ x0 . x0real∀ x1 . x1realCSNo_Re (SNo_pair x0 x1) = x0
Known complex_CSNocomplex_CSNo : ∀ x0 . x0complexCSNo x0
Theorem 4041d.. : ∀ x0 . x0complexcbf48.. x0complex (proof)
Known complex_mul_CSNocomplex_mul_CSNo : ∀ x0 . x0complex∀ x1 . x1complexmul_CSNo x0 x1complex
Theorem e1c77.. : ∀ x0 . x0complex∀ x1 . x1complexbf082.. x0 x1complex (proof)