Search for blocks/addresses/...
Proofgold Asset
asset id
dc86598753f2a51aecd29485f9ee2f2bed59e92e411526bd2c7a82400e04e562
asset hash
325602aab7aa6e8ccb47a13ca6b6479be81b81b84c0a03e1d1a4e08064871783
bday / block
19339
tx
36e89..
preasset
doc published by
Pr4zB..
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Param
ap
ap
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
a9232..
:
∀ x0 .
setprod
x0
0
=
0
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
mul_nat_0R
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
Known
c5737..
:
∀ x0 .
equip
0
x0
⟶
x0
=
0
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
mul_nat_SR
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
mul_nat_p
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Param
combine_funcs
combine_funcs
:
ι
→
ι
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
Inj0
Inj0
:
ι
→
ι
Param
Inj1
Inj1
:
ι
→
ι
Known
f4c7c..
:
∀ x0 x1 .
∀ x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
x2
(
Inj0
x3
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
x2
(
Inj1
x3
)
)
⟶
∀ x3 .
x3
∈
setsum
x0
x1
⟶
x2
x3
Known
combine_funcs_eq1
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Known
combine_funcs_eq2
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
Known
setprod_mon1
setprod_mon1
:
∀ x0 x1 x2 .
x1
⊆
x2
⟶
setprod
x0
x1
⊆
setprod
x0
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
Inj0_setsum
Inj0_setsum
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
Inj0
x2
∈
setsum
x0
x1
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
Inj1_setsum
Inj1_setsum
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
Inj1
x2
∈
setsum
x0
x1
Theorem
63881..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
mul_nat
x0
x1
)
(
setprod
x2
x3
)
(proof)
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Definition
u19
:=
ordsucc
u18
Definition
u20
:=
ordsucc
u19
Definition
u21
:=
ordsucc
u20
Definition
u22
:=
ordsucc
u21
Definition
u23
:=
ordsucc
u22
Definition
u24
:=
ordsucc
u23
Definition
u25
:=
ordsucc
u24
Definition
u26
:=
ordsucc
u25
Definition
u27
:=
ordsucc
u26
Definition
u28
:=
ordsucc
u27
Definition
u29
:=
ordsucc
u28
Definition
u30
:=
ordsucc
u29
Definition
u31
:=
ordsucc
u30
Definition
u32
:=
ordsucc
u31
Definition
u33
:=
ordsucc
u32
Definition
u34
:=
ordsucc
u33
Definition
u35
:=
ordsucc
u34
Definition
u36
:=
ordsucc
u35
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_5
nat_5
:
nat_p
5
Known
nat_4
nat_4
:
nat_p
4
Known
2cf95..
:
add_nat
6
4
=
10
Theorem
f1303..
:
add_nat
u6
u6
=
u12
(proof)
Known
nat_1
nat_1
:
nat_p
1
Known
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Theorem
fbd5e..
:
mul_nat
u6
u2
=
u12
(proof)
Known
nat_11
nat_11
:
nat_p
11
Known
add_nat_com
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
Known
nat_6
nat_6
:
nat_p
6
Known
91a85..
:
add_nat
11
6
=
17
Theorem
a2682..
:
add_nat
u6
u12
=
u18
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
176e9..
:
mul_nat
u6
u3
=
u18
(proof)
Known
nat_17
nat_17
:
nat_p
17
Known
nat_16
nat_16
:
nat_p
16
Known
f5339..
:
add_nat
16
6
=
22
Theorem
67f29..
:
add_nat
u6
u18
=
u24
(proof)
Known
nat_3
nat_3
:
nat_p
3
Theorem
4603a..
:
mul_nat
u6
u4
=
u24
(proof)
Known
2a2ab..
:
add_nat
24
6
=
30
Theorem
b6d70..
:
mul_nat
u6
u5
=
u30
(proof)
Known
73189..
:
nat_p
u24
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
d5180..
:
nat_p
u25
(proof)
Theorem
24234..
:
nat_p
u26
(proof)
Theorem
e06fe..
:
nat_p
u27
(proof)
Theorem
5c78e..
:
nat_p
u28
(proof)
Theorem
7e1a8..
:
nat_p
u29
(proof)
Theorem
a9ae2..
:
nat_p
u30
(proof)
Theorem
74918..
:
nat_p
u31
(proof)
Theorem
1f846..
:
nat_p
u32
(proof)
Theorem
ffdd1..
:
nat_p
u33
(proof)
Theorem
183e4..
:
nat_p
u34
(proof)
Theorem
966a2..
:
nat_p
u35
(proof)
Theorem
4aca7..
:
nat_p
u36
(proof)
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
ac6b6..
:
add_nat
u6
u30
=
u36
(proof)
Theorem
66577..
:
mul_nat
u6
u6
=
u36
(proof)
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Theorem
9bff1..
:
equip
(
setprod
u6
u6
)
u36
(proof)
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Theorem
bc60b..
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
(
setminus
x0
(
Sing
x2
)
)
(
setminus
x1
(
Sing
(
x3
x2
)
)
)
x3
(proof)
Known
8ac0e..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
ordsucc
x0
⟶
equip
x0
(
setminus
(
ordsucc
x0
)
(
Sing
x1
)
)
Known
In_5_6
In_5_6
:
5
∈
6
Theorem
903ea..
:
equip
(
setminus
(
setprod
u6
u6
)
(
Sing
(
lam
2
(
λ x0 .
If_i
(
x0
=
0
)
u5
u5
)
)
)
)
u35
(proof)