Search for blocks/addresses/...
Proofgold Asset
asset id
10a5f93237407fc064637e91b75a81009f4db24603ac999161cf49ed71880751
asset hash
325a81ea2526d90b4be1468712fb34025e1adcf216b589bc359d83e4679a1c03
bday / block
35159
tx
02354..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
2ea5a..
:
∀ x0 :
ι →
ι →
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 .
∀ x3 :
ι → ι
.
∀ x4 x5 x6 x7 .
∀ x8 x9 :
ι → ο
.
∀ x10 x11 :
ι → ι
.
∀ x12 .
∀ x13 :
ι → ι
.
∀ x14 :
ι → ο
.
∀ x15 :
ι → ι
.
∀ x16 :
ι →
ι → ο
.
∀ x17 :
ι →
ι →
ι →
ι → ι
.
∀ x18 :
ι →
ι →
ι → ι
.
∀ x19 :
ι →
ι →
ι → ο
.
∀ x20 x21 :
ι → ο
.
(
∀ x22 x23 x24 x25 .
x21
x25
⟶
x14
x25
⟶
x20
x25
⟶
x16
x22
(
x15
x25
)
⟶
x16
x24
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x19
x25
x23
x22
⟶
x19
x25
x23
x24
⟶
x19
x25
(
x17
x23
x24
x22
x25
)
x23
⟶
(
x23
=
x18
x25
x22
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 .
x21
x25
⟶
x14
x25
⟶
x20
x25
⟶
x16
x22
(
x15
x25
)
⟶
x16
x24
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x19
x25
x23
x22
⟶
x19
x25
x23
x24
⟶
(
x19
x25
(
x17
x23
x24
x22
x25
)
x24
⟶
False
)
⟶
(
x23
=
x18
x25
x22
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 .
x21
x25
⟶
x14
x25
⟶
x20
x25
⟶
x16
x22
(
x15
x25
)
⟶
x16
x24
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x19
x25
x23
x22
⟶
x19
x25
x23
x24
⟶
(
x19
x25
(
x17
x23
x24
x22
x25
)
x22
⟶
False
)
⟶
(
x23
=
x18
x25
x22
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 .
x21
x25
⟶
x14
x25
⟶
x20
x25
⟶
x16
x22
(
x15
x25
)
⟶
x16
x24
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x19
x25
x23
x22
⟶
x19
x25
x23
x24
⟶
(
x16
(
x17
x23
x24
x22
x25
)
(
x15
x25
)
⟶
False
)
⟶
(
x23
=
x18
x25
x22
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 x26 .
x21
x26
⟶
x14
x26
⟶
x20
x26
⟶
x16
x22
(
x15
x26
)
⟶
x16
x25
(
x15
x26
)
⟶
x16
x23
(
x15
x26
)
⟶
x23
=
x18
x26
x22
x25
⟶
x16
x24
(
x15
x26
)
⟶
x19
x26
x24
x22
⟶
x19
x26
x24
x25
⟶
(
x19
x26
x24
x23
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 .
x21
x25
⟶
x14
x25
⟶
x20
x25
⟶
x16
x22
(
x15
x25
)
⟶
x16
x24
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x23
=
x18
x25
x22
x24
⟶
(
x19
x25
x23
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 .
x21
x25
⟶
x14
x25
⟶
x20
x25
⟶
x16
x22
(
x15
x25
)
⟶
x16
x24
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x23
=
x18
x25
x22
x24
⟶
(
x19
x25
x23
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 .
x21
x24
⟶
x14
x24
⟶
x20
x24
⟶
x16
x22
(
x15
x24
)
⟶
x16
x23
(
x15
x24
)
⟶
(
x18
x24
x22
x23
=
x0
x24
x22
x23
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
(
x16
(
x13
x22
)
x22
⟶
False
)
⟶
False
)
⟶
(
(
x1
x2
⟶
False
)
⟶
False
)
⟶
(
(
x20
x12
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
(
x1
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 .
x21
x24
⟶
x14
x24
⟶
x20
x24
⟶
x16
x22
(
x15
x24
)
⟶
x16
x23
(
x15
x24
)
⟶
(
x16
(
x18
x24
x22
x23
)
(
x15
x24
)
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 .
x20
x24
⟶
x16
x22
(
x15
x24
)
⟶
x16
x23
(
x15
x24
)
⟶
(
x16
(
x0
x24
x22
x23
)
(
x15
x24
)
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
x19
x22
(
x10
x22
)
(
x11
x22
)
⟶
(
x9
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
(
x19
x22
(
x3
x22
)
(
x11
x22
)
⟶
False
)
⟶
(
x9
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
(
x19
x22
(
x10
x22
)
(
x3
x22
)
⟶
False
)
⟶
(
x9
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
(
x16
(
x11
x22
)
(
x15
x22
)
⟶
False
)
⟶
(
x9
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
(
x16
(
x3
x22
)
(
x15
x22
)
⟶
False
)
⟶
(
x9
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
(
x16
(
x10
x22
)
(
x15
x22
)
⟶
False
)
⟶
(
x9
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 x25 .
x20
x25
⟶
x9
x25
⟶
x16
x24
(
x15
x25
)
⟶
x16
x22
(
x15
x25
)
⟶
x16
x23
(
x15
x25
)
⟶
x19
x25
x24
x22
⟶
x19
x25
x22
x23
⟶
(
x19
x25
x24
x23
⟶
False
)
⟶
False
)
⟶
(
∀ x22 x23 x24 .
x21
x24
⟶
x14
x24
⟶
x20
x24
⟶
x16
x22
(
x15
x24
)
⟶
x16
x23
(
x15
x24
)
⟶
(
x18
x24
x22
x23
=
x18
x24
x23
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x22 .
x20
x22
⟶
x14
x22
⟶
x8
x22
⟶
False
)
⟶
(
x19
x4
x5
x6
⟶
False
)
⟶
(
(
x19
x4
x5
(
x18
x4
x6
x7
)
⟶
False
)
⟶
False
)
⟶
(
(
x16
x5
(
x15
x4
)
⟶
False
)
⟶
False
)
⟶
(
(
x16
x7
(
x15
x4
)
⟶
False
)
⟶
False
)
⟶
(
(
x16
x6
(
x15
x4
)
⟶
False
)
⟶
False
)
⟶
(
(
x20
x4
⟶
False
)
⟶
False
)
⟶
(
(
x14
x4
⟶
False
)
⟶
False
)
⟶
(
(
x21
x4
⟶
False
)
⟶
False
)
⟶
(
(
x9
x4
⟶
False
)
⟶
False
)
⟶
False
(proof)