Search for blocks/addresses/...
Proofgold Asset
asset id
33c42239c27da871b8427e47e444c60b3e7b879c3484c12e400640e32cc017aa
asset hash
ddad935fcfdaf798f591d90a2a7c5ddf3079b1aea0fc304b3a38ed56820485fe
bday / block
1168
tx
8a441..
preasset
doc published by
PrGxv..
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
eb789..
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Known
13bcd..
iff_def
:
iff
=
λ x1 x2 : ο .
and
(
x1
⟶
x2
)
(
x2
⟶
x1
)
Known
50594..
iffEL
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
⟶
x1
Known
93720..
iffER
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x1
⟶
x0
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
cd5b6..
exandI_i
:
∀ x0 x1 :
ι → ο
.
∀ x2 .
x0
x2
⟶
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x0
x4
)
(
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
61640..
exandE_i
:
∀ x0 x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Known
c1173..
Subq_def
:
Subq
=
λ x1 x2 .
∀ x3 .
In
x3
x1
⟶
In
x3
x2
Known
b0dce..
SubqI
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
Subq
x0
x1
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
e3c91..
tab_pos_Subq
:
∀ x0 x1 .
Subq
x0
x1
⟶
(
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
False
)
⟶
False
(proof)
Theorem
71338..
tab_neg_Subq
:
∀ x0 x1 .
not
(
Subq
x0
x1
)
⟶
(
not
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
False
)
⟶
False
(proof)
Known
5f38d..
TransSet_def
:
TransSet
=
λ x1 .
∀ x2 .
In
x2
x1
⟶
Subq
x2
x1
Theorem
79a81..
TransSetI
:
∀ x0 .
(
∀ x1 .
In
x1
x0
⟶
Subq
x1
x0
)
⟶
TransSet
x0
(proof)
Theorem
2fc4a..
TransSetE
:
∀ x0 .
TransSet
x0
⟶
∀ x1 .
In
x1
x0
⟶
Subq
x1
x0
(proof)
Known
4705c..
atleast2_def
:
atleast2
=
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
In
x3
x1
)
(
not
(
Subq
x1
(
Power
x3
)
)
)
⟶
x2
)
⟶
x2
Theorem
c2ced..
atleast2_I
:
∀ x0 x1 .
In
x1
x0
⟶
not
(
Subq
x0
(
Power
x1
)
)
⟶
atleast2
x0
(proof)
Theorem
ffa80..
atleast2_E
:
∀ x0 .
atleast2
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
In
x2
x0
)
(
not
(
Subq
x0
(
Power
x2
)
)
)
⟶
x1
)
⟶
x1
(proof)
Known
98887..
atleast3_def
:
atleast3
=
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
Subq
x3
x1
)
(
and
(
not
(
Subq
x1
x3
)
)
(
atleast2
x3
)
)
⟶
x2
)
⟶
x2
Theorem
6b4a4..
atleast3_I
:
∀ x0 x1 .
Subq
x1
x0
⟶
not
(
Subq
x0
x1
)
⟶
atleast2
x1
⟶
atleast3
x0
(proof)
Theorem
218d1..
atleast3_E
:
∀ x0 .
atleast3
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
Subq
x2
x0
)
(
and
(
not
(
Subq
x0
x2
)
)
(
atleast2
x2
)
)
⟶
x1
)
⟶
x1
(proof)
Known
d27ea..
atleast4_def
:
atleast4
=
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
Subq
x3
x1
)
(
and
(
not
(
Subq
x1
x3
)
)
(
atleast3
x3
)
)
⟶
x2
)
⟶
x2
Theorem
649d8..
atleast4_I
:
∀ x0 x1 .
Subq
x1
x0
⟶
not
(
Subq
x0
x1
)
⟶
atleast3
x1
⟶
atleast4
x0
(proof)
Theorem
2dcf7..
atleast4_E
:
∀ x0 .
atleast4
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
Subq
x2
x0
)
(
and
(
not
(
Subq
x0
x2
)
)
(
atleast3
x2
)
)
⟶
x1
)
⟶
x1
(proof)
Known
22d74..
atleast5_def
:
atleast5
=
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
Subq
x3
x1
)
(
and
(
not
(
Subq
x1
x3
)
)
(
atleast4
x3
)
)
⟶
x2
)
⟶
x2
Theorem
6ece7..
atleast5_I
:
∀ x0 x1 .
Subq
x1
x0
⟶
not
(
Subq
x0
x1
)
⟶
atleast4
x1
⟶
atleast5
x0
(proof)
Theorem
ee384..
atleast5_E
:
∀ x0 .
atleast5
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
Subq
x2
x0
)
(
and
(
not
(
Subq
x0
x2
)
)
(
atleast4
x2
)
)
⟶
x1
)
⟶
x1
(proof)
Known
30e9c..
atleast6_def
:
atleast6
=
λ x1 .
∀ x2 : ο .
(
∀ x3 .
and
(
Subq
x3
x1
)
(
and
(
not
(
Subq
x1
x3
)
)
(
atleast5
x3
)
)
⟶
x2
)
⟶
x2
Theorem
500a3..
atleast6_I
:
∀ x0 x1 .
Subq
x1
x0
⟶
not
(
Subq
x0
x1
)
⟶
atleast5
x1
⟶
atleast6
x0
(proof)
Theorem
5a74c..
atleast6_E
:
∀ x0 .
atleast6
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
Subq
x2
x0
)
(
and
(
not
(
Subq
x0
x2
)
)
(
atleast5
x2
)
)
⟶
x1
)
⟶
x1
(proof)
Known
71a28..
exactly2_def
:
exactly2
=
λ x1 .
and
(
atleast2
x1
)
(
not
(
atleast3
x1
)
)
Theorem
0570d..
exactly2_I
:
∀ x0 .
atleast2
x0
⟶
not
(
atleast3
x0
)
⟶
exactly2
x0
(proof)
Theorem
84897..
exactly2_E
:
∀ x0 .
exactly2
x0
⟶
and
(
atleast2
x0
)
(
not
(
atleast3
x0
)
)
(proof)
Known
f9659..
exactly3_def
:
exactly3
=
λ x1 .
and
(
atleast3
x1
)
(
not
(
atleast4
x1
)
)
Theorem
f2d7f..
exactly3_I
:
∀ x0 .
atleast3
x0
⟶
not
(
atleast4
x0
)
⟶
exactly3
x0
(proof)
Theorem
151e5..
exactly3_E
:
∀ x0 .
exactly3
x0
⟶
and
(
atleast3
x0
)
(
not
(
atleast4
x0
)
)
(proof)
Known
5d30c..
exactly4_def
:
exactly4
=
λ x1 .
and
(
atleast4
x1
)
(
not
(
atleast5
x1
)
)
Theorem
3654c..
exactly4_I
:
∀ x0 .
atleast4
x0
⟶
not
(
atleast5
x0
)
⟶
exactly4
x0
(proof)
Theorem
01602..
exactly4_E
:
∀ x0 .
exactly4
x0
⟶
and
(
atleast4
x0
)
(
not
(
atleast5
x0
)
)
(proof)
Known
50102..
exactly5_def
:
exactly5
=
λ x1 .
and
(
atleast5
x1
)
(
not
(
atleast6
x1
)
)
Theorem
15f81..
exactly5_I
:
∀ x0 .
atleast5
x0
⟶
not
(
atleast6
x0
)
⟶
exactly5
x0
(proof)
Theorem
2d4be..
exactly5_E
:
∀ x0 .
exactly5
x0
⟶
and
(
atleast5
x0
)
(
not
(
atleast6
x0
)
)
(proof)
Known
382c5..
nIn_def
:
nIn
=
λ x1 x2 .
not
(
In
x1
x2
)
Theorem
6abef..
nIn_I
:
∀ x0 x1 .
not
(
In
x0
x1
)
⟶
nIn
x0
x1
(proof)
Theorem
f0129..
nIn_E
:
∀ x0 x1 .
nIn
x0
x1
⟶
not
(
In
x0
x1
)
(proof)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
9d2e6..
nIn_I2
:
∀ x0 x1 .
(
In
x0
x1
⟶
False
)
⟶
nIn
x0
x1
(proof)
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
(proof)
Theorem
085e3..
contra_In
:
∀ x0 x1 .
(
nIn
x0
x1
⟶
False
)
⟶
In
x0
x1
(proof)
Theorem
ef881..
neg_nIn
:
∀ x0 x1 .
not
(
nIn
x0
x1
)
⟶
In
x0
x1
(proof)
Known
557c1..
nSubq_def
:
nSubq
=
λ x1 x2 .
not
(
Subq
x1
x2
)
Theorem
bbed8..
nSubq_I
:
∀ x0 x1 .
not
(
Subq
x0
x1
)
⟶
nSubq
x0
x1
(proof)
Theorem
3f1de..
nSubq_E
:
∀ x0 x1 .
nSubq
x0
x1
⟶
not
(
Subq
x0
x1
)
(proof)
Theorem
579aa..
nSubq_I2
:
∀ x0 x1 .
(
Subq
x0
x1
⟶
False
)
⟶
nSubq
x0
x1
(proof)
Theorem
b2a04..
nSubq_E2
:
∀ x0 x1 .
nSubq
x0
x1
⟶
Subq
x0
x1
⟶
False
(proof)
Theorem
80eaf..
neg_nSubq
:
∀ x0 x1 .
not
(
nSubq
x0
x1
)
⟶
Subq
x0
x1
(proof)
Theorem
a82da..
contra_Subq
:
∀ x0 x1 .
(
nSubq
x0
x1
⟶
False
)
⟶
Subq
x0
x1
(proof)
Theorem
2ad64..
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
(proof)
Theorem
a7ffa..
Subq_contra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
nIn
x2
x1
⟶
nIn
x2
x0
(proof)
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
3cfc3..
nIn_Empty
:
∀ x0 .
nIn
x0
0
(proof)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
b41a2..
Subq_Empty
:
∀ x0 .
Subq
0
x0
(proof)
Known
b3824..
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Theorem
d6778..
Empty_Subq_eq
:
∀ x0 .
Subq
x0
0
⟶
x0
=
0
(proof)
Theorem
d0de4..
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
(proof)
Known
d182e..
iffE
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
(
not
x0
⟶
not
x1
⟶
x2
)
⟶
x2
Known
c7267..
UnionEq
:
∀ x0 x1 .
iff
(
In
x1
(
Union
x0
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
In
x1
x3
)
(
In
x3
x0
)
⟶
x2
)
⟶
x2
)
Theorem
ce145..
UnionE
:
∀ x0 x1 .
In
x1
(
Union
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
In
x1
x3
)
(
In
x3
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
2109a..
UnionE2
:
∀ x0 x1 .
In
x1
(
Union
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
In
x1
x3
⟶
In
x3
x0
⟶
x2
)
⟶
x2
(proof)
Theorem
a4d26..
UnionI
:
∀ x0 x1 x2 .
In
x1
x2
⟶
In
x2
x0
⟶
In
x1
(
Union
x0
)
(proof)
Theorem
eb828..
tab_pos_Union
:
∀ x0 x1 .
In
x1
(
Union
x0
)
⟶
(
∀ x2 .
In
x1
x2
⟶
In
x2
x0
⟶
False
)
⟶
False
(proof)
Theorem
f20e6..
tab_neg_Union
:
∀ x0 x1 x2 .
nIn
x1
(
Union
x0
)
⟶
(
nIn
x1
x2
⟶
False
)
⟶
(
nIn
x2
x0
⟶
False
)
⟶
False
(proof)
Theorem
fcac9..
Union_Empty
:
Union
0
=
0
(proof)
Known
ae89b..
PowerE
:
∀ x0 x1 .
In
x1
(
Power
x0
)
⟶
Subq
x1
x0
Known
2d44a..
PowerI
:
∀ x0 x1 .
Subq
x1
x0
⟶
In
x1
(
Power
x0
)
Theorem
a71e8..
tab_pos_Power
:
∀ x0 x1 .
In
x1
(
Power
x0
)
⟶
(
Subq
x1
x0
⟶
False
)
⟶
False
(proof)
Theorem
cd88a..
tab_neg_Power
:
∀ x0 x1 .
nIn
x1
(
Power
x0
)
⟶
(
nSubq
x1
x0
⟶
False
)
⟶
False
(proof)
Theorem
f2c89..
Empty_In_Power
:
∀ x0 .
In
0
(
Power
x0
)
(proof)
Known
0d4e6..
ReplEq
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
iff
(
In
x2
(
Repl
x0
x1
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
)
Theorem
74a75..
ReplE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
In
x4
x0
)
(
x2
=
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
0f096..
ReplE2
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
In
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
(proof)
Theorem
f1bf4..
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
x0
⟶
In
(
x1
x2
)
(
Repl
x0
x1
)
(proof)
Theorem
c703f..
tab_pos_Repl
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
In
x2
(
Repl
x0
x1
)
⟶
(
∀ x3 .
In
x3
x0
⟶
x2
=
x1
x3
⟶
False
)
⟶
False
(proof)
Theorem
b0098..
tab_neg_Repl
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
nIn
x2
(
Repl
x0
x1
)
⟶
(
nIn
x3
x0
⟶
False
)
⟶
(
not
(
x2
=
x1
x3
)
⟶
False
)
⟶
False
(proof)
Theorem
8a1cd..
Repl_Empty
:
∀ x0 :
ι → ι
.
Repl
0
x0
=
0
(proof)
Theorem
5a1ea..
ReplEq_ext_sub
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
Subq
(
Repl
x0
x1
)
(
Repl
x0
x2
)
(proof)
Theorem
09697..
ReplEq_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
Repl
x0
x1
=
Repl
x0
x2
(proof)