Search for blocks/addresses/...
Proofgold Asset
asset id
352519db74d21586493ead2c50a0fcedd7ddc2bde9e62820ce3a214ad80fd22c
asset hash
38724f8d0e574a230acbf0512c71b69e02f61d546bdcbb21c82e7811fb454489
bday / block
21761
tx
77f90..
preasset
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
3c838..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι →
ι →
ι → ο
.
(
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
∀ x7 : ο .
(
x1
x3
x4
x5
x6
⟶
x7
)
⟶
(
x2
x3
x4
x5
x6
⟶
x7
)
⟶
(
x1
x5
x6
x3
x4
⟶
x7
)
⟶
x7
)
⟶
(
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x2
x3
x4
x5
x6
⟶
x2
x5
x6
x3
x4
)
⟶
∀ x3 .
x0
x3
⟶
∀ x4 .
x0
x4
⟶
∀ x5 .
x0
x5
⟶
∀ x6 .
x0
x6
⟶
∀ x7 .
x0
x7
⟶
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
not
(
x2
x3
x4
x5
x6
)
⟶
not
(
x2
x3
x4
x7
x8
)
⟶
not
(
x2
x3
x4
x9
x10
)
⟶
not
(
x2
x3
x4
x11
x12
)
⟶
not
(
x2
x3
x4
x13
x14
)
⟶
not
(
x2
x5
x6
x7
x8
)
⟶
not
(
x2
x5
x6
x9
x10
)
⟶
not
(
x2
x5
x6
x11
x12
)
⟶
not
(
x2
x5
x6
x13
x14
)
⟶
not
(
x2
x7
x8
x9
x10
)
⟶
not
(
x2
x7
x8
x11
x12
)
⟶
not
(
x2
x7
x8
x13
x14
)
⟶
not
(
x2
x9
x10
x11
x12
)
⟶
not
(
x2
x9
x10
x13
x14
)
⟶
not
(
x2
x11
x12
x13
x14
)
⟶
∀ x15 : ο .
(
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
∀ x25 .
x0
x25
⟶
∀ x26 .
x0
x26
⟶
∀ x27 .
x0
x27
⟶
x1
x16
x17
x18
x19
⟶
x1
x18
x19
x20
x21
⟶
x1
x20
x21
x22
x23
⟶
x1
x22
x23
x24
x25
⟶
x1
x24
x25
x26
x27
⟶
not
(
x2
x16
x17
x18
x19
)
⟶
not
(
x2
x16
x17
x20
x21
)
⟶
not
(
x2
x16
x17
x22
x23
)
⟶
not
(
x2
x16
x17
x24
x25
)
⟶
not
(
x2
x16
x17
x26
x27
)
⟶
not
(
x2
x18
x19
x20
x21
)
⟶
not
(
x2
x18
x19
x22
x23
)
⟶
not
(
x2
x18
x19
x24
x25
)
⟶
not
(
x2
x18
x19
x26
x27
)
⟶
not
(
x2
x20
x21
x22
x23
)
⟶
not
(
x2
x20
x21
x24
x25
)
⟶
not
(
x2
x20
x21
x26
x27
)
⟶
not
(
x2
x22
x23
x24
x25
)
⟶
not
(
x2
x22
x23
x26
x27
)
⟶
not
(
x2
x24
x25
x26
x27
)
⟶
(
∀ x28 : ο .
(
x16
=
x3
⟶
x17
=
x4
⟶
x18
=
x5
⟶
x19
=
x6
⟶
x28
)
⟶
(
x16
=
x3
⟶
x17
=
x4
⟶
x20
=
x5
⟶
x21
=
x6
⟶
x28
)
⟶
(
x16
=
x3
⟶
x17
=
x4
⟶
x22
=
x5
⟶
x23
=
x6
⟶
x28
)
⟶
(
x16
=
x3
⟶
x17
=
x4
⟶
x24
=
x5
⟶
x25
=
x6
⟶
x28
)
⟶
(
x16
=
x3
⟶
x17
=
x4
⟶
x26
=
x5
⟶
x27
=
x6
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x16
=
x5
⟶
x17
=
x6
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x20
=
x5
⟶
x21
=
x6
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x22
=
x5
⟶
x23
=
x6
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x24
=
x5
⟶
x25
=
x6
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x26
=
x5
⟶
x27
=
x6
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x16
=
x5
⟶
x17
=
x6
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x18
=
x5
⟶
x19
=
x6
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x22
=
x5
⟶
x23
=
x6
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x24
=
x5
⟶
x25
=
x6
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x26
=
x5
⟶
x27
=
x6
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x16
=
x5
⟶
x17
=
x6
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x18
=
x5
⟶
x19
=
x6
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x20
=
x5
⟶
x21
=
x6
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x24
=
x5
⟶
x25
=
x6
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x26
=
x5
⟶
x27
=
x6
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x16
=
x5
⟶
x17
=
x6
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x18
=
x5
⟶
x19
=
x6
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x20
=
x5
⟶
x21
=
x6
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x22
=
x5
⟶
x23
=
x6
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x26
=
x5
⟶
x27
=
x6
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x16
=
x5
⟶
x17
=
x6
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x18
=
x5
⟶
x19
=
x6
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x20
=
x5
⟶
x21
=
x6
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x22
=
x5
⟶
x23
=
x6
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x24
=
x5
⟶
x25
=
x6
⟶
x28
)
⟶
x28
)
⟶
x15
)
⟶
x15
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
712bb..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
(
x2
=
x3
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x4
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x5
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x3
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x4
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x5
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
∀ x14 : ο .
(
x8
x10
x11
x12
x13
⟶
x14
)
⟶
(
x9
x10
x11
x12
x13
⟶
x14
)
⟶
(
x8
x12
x13
x10
x11
⟶
x14
)
⟶
x14
)
⟶
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x9
x10
x11
x12
x13
⟶
x9
x12
x13
x10
x11
)
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x1
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
not
(
x9
x10
x2
x11
x12
)
⟶
not
(
x9
x10
x2
x13
x14
)
⟶
not
(
x9
x10
x2
x15
x16
)
⟶
not
(
x9
x10
x2
x17
x18
)
⟶
not
(
x9
x10
x2
x19
x20
)
⟶
not
(
x9
x11
x12
x13
x14
)
⟶
not
(
x9
x11
x12
x15
x16
)
⟶
not
(
x9
x11
x12
x17
x18
)
⟶
not
(
x9
x11
x12
x19
x20
)
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
x14
x17
x18
)
⟶
not
(
x9
x13
x14
x19
x20
)
⟶
not
(
x9
x15
x16
x17
x18
)
⟶
not
(
x9
x15
x16
x19
x20
)
⟶
not
(
x9
x17
x18
x19
x20
)
⟶
∀ x21 : ο .
(
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
x1
x23
⟶
∀ x24 .
x0
x24
⟶
∀ x25 .
x0
x25
⟶
∀ x26 .
x0
x26
⟶
∀ x27 .
x0
x27
⟶
∀ x28 .
x0
x28
⟶
∀ x29 .
x0
x29
⟶
∀ x30 .
x0
x30
⟶
∀ x31 .
x0
x31
⟶
∀ x32 .
x0
x32
⟶
x8
x22
x2
x24
x23
⟶
x8
x24
x23
x25
x26
⟶
x8
x25
x26
x27
x28
⟶
x8
x27
x28
x29
x30
⟶
x8
x29
x30
x31
x32
⟶
not
(
x9
x22
x2
x24
x23
)
⟶
not
(
x9
x22
x2
x25
x26
)
⟶
not
(
x9
x22
x2
x27
x28
)
⟶
not
(
x9
x22
x2
x29
x30
)
⟶
not
(
x9
x22
x2
x31
x32
)
⟶
not
(
x9
x24
x23
x25
x26
)
⟶
not
(
x9
x24
x23
x27
x28
)
⟶
not
(
x9
x24
x23
x29
x30
)
⟶
not
(
x9
x24
x23
x31
x32
)
⟶
not
(
x9
x25
x26
x27
x28
)
⟶
not
(
x9
x25
x26
x29
x30
)
⟶
not
(
x9
x25
x26
x31
x32
)
⟶
not
(
x9
x27
x28
x29
x30
)
⟶
not
(
x9
x27
x28
x31
x32
)
⟶
not
(
x9
x29
x30
x31
x32
)
⟶
x21
)
⟶
x21
(proof)
Theorem
3dd41..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x1
x2
⟶
x1
x3
⟶
x1
x4
⟶
x1
x5
⟶
(
x2
=
x3
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x4
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x5
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
∀ x8 :
ι →
ι →
ι →
ι → ο
.
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x3
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x4
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x5
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x2
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x3
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x4
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x6
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x5
)
)
⟶
(
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
not
(
x8
x9
x7
x10
x6
)
)
⟶
∀ x9 :
ι →
ι →
ι →
ι → ο
.
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
∀ x14 : ο .
(
x8
x10
x11
x12
x13
⟶
x14
)
⟶
(
x9
x10
x11
x12
x13
⟶
x14
)
⟶
(
x8
x12
x13
x10
x11
⟶
x14
)
⟶
x14
)
⟶
(
∀ x10 x11 x12 x13 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x9
x10
x11
x12
x13
⟶
x9
x12
x13
x10
x11
)
⟶
∀ x10 x11 x12 :
ι →
ι → ι
.
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x0
(
x10
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x14
⟶
x1
(
x10
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x10
x13
(
x10
x13
x14
)
=
x14
)
⟶
(
∀ x13 .
x0
x13
⟶
x10
x13
x2
=
x3
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x0
(
x11
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x14
⟶
x1
(
x11
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x11
x13
(
x11
x13
x14
)
=
x14
)
⟶
(
∀ x13 .
x0
x13
⟶
x11
x13
x2
=
x4
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x0
(
x12
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x14
⟶
x1
(
x12
x13
x14
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
x12
x13
(
x12
x13
x14
)
=
x14
)
⟶
(
∀ x13 .
x0
x13
⟶
x12
x13
x2
=
x5
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
(
x10
x13
x14
)
x15
(
x10
x15
x16
)
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
(
x11
x13
x14
)
x15
(
x11
x15
x16
)
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
not
(
x9
x13
x14
x15
x16
)
⟶
not
(
x9
x13
(
x12
x13
x14
)
x15
(
x12
x15
x16
)
)
)
⟶
∀ x13 .
x1
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
x1
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
not
(
x9
x14
x13
x15
x16
)
⟶
not
(
x9
x14
x13
x17
x18
)
⟶
not
(
x9
x14
x13
x19
x20
)
⟶
not
(
x9
x14
x13
x21
x22
)
⟶
not
(
x9
x14
x13
x23
x24
)
⟶
not
(
x9
x15
x16
x17
x18
)
⟶
not
(
x9
x15
x16
x19
x20
)
⟶
not
(
x9
x15
x16
x21
x22
)
⟶
not
(
x9
x15
x16
x23
x24
)
⟶
not
(
x9
x17
x18
x19
x20
)
⟶
not
(
x9
x17
x18
x21
x22
)
⟶
not
(
x9
x17
x18
x23
x24
)
⟶
not
(
x9
x19
x20
x21
x22
)
⟶
not
(
x9
x19
x20
x23
x24
)
⟶
not
(
x9
x21
x22
x23
x24
)
⟶
∀ x25 : ο .
(
∀ x26 .
x0
x26
⟶
∀ x27 .
x0
x27
⟶
x1
x27
⟶
∀ x28 .
x0
x28
⟶
∀ x29 .
x0
x29
⟶
∀ x30 .
x0
x30
⟶
∀ x31 .
x0
x31
⟶
∀ x32 .
x0
x32
⟶
∀ x33 .
x0
x33
⟶
∀ x34 .
x0
x34
⟶
∀ x35 .
x0
x35
⟶
∀ x36 .
x0
x36
⟶
x8
x26
x2
x28
x27
⟶
x8
x28
x27
x29
x30
⟶
x8
x29
x30
x31
x32
⟶
x8
x31
x32
x33
x34
⟶
x8
x33
x34
x35
x36
⟶
not
(
x9
x26
x2
x28
x27
)
⟶
not
(
x9
x26
x2
x29
x30
)
⟶
not
(
x9
x26
x2
x31
x32
)
⟶
not
(
x9
x26
x2
x33
x34
)
⟶
not
(
x9
x26
x2
x35
x36
)
⟶
not
(
x9
x28
x27
x29
x30
)
⟶
not
(
x9
x28
x27
x31
x32
)
⟶
not
(
x9
x28
x27
x33
x34
)
⟶
not
(
x9
x28
x27
x35
x36
)
⟶
not
(
x9
x29
x30
x31
x32
)
⟶
not
(
x9
x29
x30
x33
x34
)
⟶
not
(
x9
x29
x30
x35
x36
)
⟶
not
(
x9
x31
x32
x33
x34
)
⟶
not
(
x9
x31
x32
x35
x36
)
⟶
not
(
x9
x33
x34
x35
x36
)
⟶
x25
)
⟶
x25
(proof)