Search for blocks/addresses/...

Proofgold Asset

asset id
369cb9bdae96103555c04c2b5fce2aefe96834c487b234cdbd0903549d922553
asset hash
a8fff31c211267cc0dd733de13e82bc1ab853e53f017269620cfa4b03ed7aaff
bday / block
36396
tx
575bc..
preasset
doc published by PrCmT..
Known df_rmo__df_rab__df_v__df_cdeq__df_sbc__df_csb__df_dif__df_un__df_in__df_ss__df_pss__df_symdif__df_nul__df_if__df_pw__df_sn__df_pr__df_tp : ∀ x0 : ο . ((∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wb (wrmo x1 x2) (wmo (λ x3 . wa (wcel (cv x3) (x2 x3)) (x1 x3))))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wceq (crab x1 x2) (cab (λ x3 . wa (wcel (cv x3) (x2 x3)) (x1 x3))))wceq cvv (cab (λ x1 . wceq (cv x1) (cv x1)))(∀ x1 : ο . ∀ x2 x3 . wb (wcdeq x1 x2 x3) (wceq (cv x2) (cv x3)x1))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . ∀ x3 . wb (wsbc x1 (x2 x3)) (wcel (x2 x3) (cab x1)))(∀ x1 x2 : ι → ι → ο . ∀ x3 . wceq (csb (x1 x3) x2) (cab (λ x4 . wsbc (λ x5 . wcel (cv x4) (x2 x5)) (x1 x3))))(∀ x1 x2 : ι → ο . wceq (cdif x1 x2) (cab (λ x3 . wa (wcel (cv x3) x1) (wn (wcel (cv x3) x2)))))(∀ x1 x2 : ι → ο . wceq (cun x1 x2) (cab (λ x3 . wo (wcel (cv x3) x1) (wcel (cv x3) x2))))(∀ x1 x2 : ι → ο . wceq (cin x1 x2) (cab (λ x3 . wa (wcel (cv x3) x1) (wcel (cv x3) x2))))(∀ x1 x2 : ι → ο . wb (wss x1 x2) (wceq (cin x1 x2) x1))(∀ x1 x2 : ι → ο . wb (wpss x1 x2) (wa (wss x1 x2) (wne x1 x2)))(∀ x1 x2 : ι → ο . wceq (csymdif x1 x2) (cun (cdif x1 x2) (cdif x2 x1)))wceq c0 (cdif cvv cvv)(∀ x1 : ο . ∀ x2 x3 : ι → ο . wceq (cif x1 x2 x3) (cab (λ x4 . wo (wa (wcel (cv x4) x2) x1) (wa (wcel (cv x4) x3) (wn x1)))))(∀ x1 : ι → ο . wceq (cpw x1) (cab (λ x2 . wss (cv x2) x1)))(∀ x1 : ι → ο . wceq (csn x1) (cab (λ x2 . wceq (cv x2) x1)))(∀ x1 x2 : ι → ο . wceq (cpr x1 x2) (cun (csn x1) (csn x2)))(∀ x1 x2 x3 : ι → ο . wceq (ctp x1 x2 x3) (cun (cpr x1 x2) (csn x3)))x0)x0
Theorem df_rmo : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wb (wrmo x0 x1) (wmo (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))) (proof)
Theorem df_rab : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . wceq (crab x0 x1) (cab (λ x2 . wa (wcel (cv x2) (x1 x2)) (x0 x2))) (proof)
Theorem df_v : wceq cvv (cab (λ x0 . wceq (cv x0) (cv x0))) (proof)
Theorem df_cdeq : ∀ x0 : ο . ∀ x1 x2 . wb (wcdeq x0 x1 x2) (wceq (cv x1) (cv x2)x0) (proof)
Theorem df_sbc : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ο . ∀ x2 . wb (wsbc x0 (x1 x2)) (wcel (x1 x2) (cab x0)) (proof)
Theorem df_csb : ∀ x0 x1 : ι → ι → ο . ∀ x2 . wceq (csb (x0 x2) x1) (cab (λ x3 . wsbc (λ x4 . wcel (cv x3) (x1 x4)) (x0 x2))) (proof)
Theorem df_dif : ∀ x0 x1 : ι → ο . wceq (cdif x0 x1) (cab (λ x2 . wa (wcel (cv x2) x0) (wn (wcel (cv x2) x1)))) (proof)
Theorem df_un : ∀ x0 x1 : ι → ο . wceq (cun x0 x1) (cab (λ x2 . wo (wcel (cv x2) x0) (wcel (cv x2) x1))) (proof)
Theorem df_in : ∀ x0 x1 : ι → ο . wceq (cin x0 x1) (cab (λ x2 . wa (wcel (cv x2) x0) (wcel (cv x2) x1))) (proof)
Theorem df_ss : ∀ x0 x1 : ι → ο . wb (wss x0 x1) (wceq (cin x0 x1) x0) (proof)
Theorem df_pss : ∀ x0 x1 : ι → ο . wb (wpss x0 x1) (wa (wss x0 x1) (wne x0 x1)) (proof)
Theorem df_symdif : ∀ x0 x1 : ι → ο . wceq (csymdif x0 x1) (cun (cdif x0 x1) (cdif x1 x0)) (proof)
Theorem df_nul : wceq c0 (cdif cvv cvv) (proof)
Theorem df_if : ∀ x0 : ο . ∀ x1 x2 : ι → ο . wceq (cif x0 x1 x2) (cab (λ x3 . wo (wa (wcel (cv x3) x1) x0) (wa (wcel (cv x3) x2) (wn x0)))) (proof)
Theorem df_pw : ∀ x0 : ι → ο . wceq (cpw x0) (cab (λ x1 . wss (cv x1) x0)) (proof)
Theorem df_sn : ∀ x0 : ι → ο . wceq (csn x0) (cab (λ x1 . wceq (cv x1) x0)) (proof)
Theorem df_pr : ∀ x0 x1 : ι → ο . wceq (cpr x0 x1) (cun (csn x0) (csn x1)) (proof)
Theorem df_tp : ∀ x0 x1 x2 : ι → ο . wceq (ctp x0 x1 x2) (cun (cpr x0 x1) (csn x2)) (proof)