Search for blocks/addresses/...

Proofgold Asset

asset id
376b190e06e0b2ae35cc2108d448443a9af778aa324611dd2529d1e24822f18f
asset hash
a7ea2c5a4edf24f5e4276dcc39fddbde7e80728b46dfb9e048a970c90e91b87d
bday / block
25653
tx
1dfa9..
preasset
doc published by PrGxv..
Param intint : ι
Param mul_SNomul_SNo : ιιι
Param add_SNoadd_SNo : ιιι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param SNoLeSNoLe : ιιο
Param minus_SNominus_SNo : ιι
Conjecture 8011f..A16195 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 . x18int∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι → ι → ι . (∀ x21 . x21int∀ x22 . x22int∀ x23 . x23intx20 x21 x22 x23int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι → ι . (∀ x24 . x24int∀ x25 . x25intx23 x24 x25int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 . x25int∀ x26 . x26int∀ x27 : ι → ι → ι → ι . (∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx27 x28 x29 x30int)∀ x28 : ι → ι → ι → ι . (∀ x29 . x29int∀ x30 . x30int∀ x31 . x31intx28 x29 x30 x31int)∀ x29 : ι → ι . (∀ x30 . x30intx29 x30int)∀ x30 : ι → ι . (∀ x31 . x31intx30 x31int)(∀ x31 . x31int∀ x32 . x32intx0 x31 x32 = mul_SNo (add_SNo 2 x32) x31)x1 = 2(∀ x31 . x31intx2 x31 = x31)(∀ x31 . x31int∀ x32 . x32intx3 x31 x32 = If_i (SNoLe x31 0) x32 (x0 (x3 (add_SNo x31 (minus_SNo 1)) x32) x31))(∀ x31 . x31intx4 x31 = x3 x1 (x2 x31))(∀ x31 . x31int∀ x32 . x32intx5 x31 x32 = add_SNo (add_SNo (x4 x31) (minus_SNo x31)) x32)(∀ x31 . x31int∀ x32 . x32intx6 x31 x32 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x32 x32)) x32))(∀ x31 . x31intx7 x31 = x31)x8 = 0x9 = 1(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx10 x31 x32 x33 = If_i (SNoLe x31 0) x32 (x5 (x10 (add_SNo x31 (minus_SNo 1)) x32 x33) (x11 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx11 x31 x32 x33 = If_i (SNoLe x31 0) x33 (x6 (x10 (add_SNo x31 (minus_SNo 1)) x32 x33) (x11 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31intx12 x31 = x10 (x7 x31) x8 x9)(∀ x31 . x31intx13 x31 = x12 x31)(∀ x31 . x31int∀ x32 . x32intx14 x31 x32 = mul_SNo x31 x32)(∀ x31 . x31int∀ x32 . x32intx15 x31 x32 = x32)(∀ x31 . x31intx16 x31 = x31)x17 = 1x18 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx19 x31 x32 x33 = If_i (SNoLe x31 0) x32 (x14 (x19 (add_SNo x31 (minus_SNo 1)) x32 x33) (x20 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx20 x31 x32 x33 = If_i (SNoLe x31 0) x33 (x15 (x19 (add_SNo x31 (minus_SNo 1)) x32 x33) (x20 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31intx21 x31 = x19 (x16 x31) x17 x18)(∀ x31 . x31int∀ x32 . x32intx22 x31 x32 = mul_SNo x31 x32)(∀ x31 . x31int∀ x32 . x32intx23 x31 x32 = x32)(∀ x31 . x31intx24 x31 = x31)x25 = 1x26 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx27 x31 x32 x33 = If_i (SNoLe x31 0) x32 (x22 (x27 (add_SNo x31 (minus_SNo 1)) x32 x33) (x28 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx28 x31 x32 x33 = If_i (SNoLe x31 0) x33 (x23 (x27 (add_SNo x31 (minus_SNo 1)) x32 x33) (x28 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31intx29 x31 = x27 (x24 x31) x25 x26)(∀ x31 . x31intx30 x31 = add_SNo (x21 x31) (minus_SNo (x29 x31)))∀ x31 . x31intSNoLe 0 x31x13 x31 = x30 x31
Conjecture 1df0e..A16191 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 . x6int∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 . x27int∀ x28 . x28int∀ x29 : ι → ι → ι → ι . (∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx29 x30 x31 x32int)∀ x30 : ι → ι → ι → ι . (∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx30 x31 x32 x33int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)(∀ x33 . x33intx0 x33 = add_SNo (add_SNo x33 x33) x33)(∀ x33 . x33int∀ x34 . x34intx1 x33 x34 = add_SNo x34 x34)x2 = 1(∀ x33 . x33int∀ x34 . x34intx3 x33 x34 = If_i (SNoLe x33 0) x34 (x0 (x3 (add_SNo x33 (minus_SNo 1)) x34)))(∀ x33 . x33int∀ x34 . x34intx4 x33 x34 = x3 (x1 x33 x34) x2)(∀ x33 . x33int∀ x34 . x34intx5 x33 x34 = mul_SNo (add_SNo 2 x34) x33)x6 = 2(∀ x33 . x33intx7 x33 = x33)(∀ x33 . x33int∀ x34 . x34intx8 x33 x34 = If_i (SNoLe x33 0) x34 (x5 (x8 (add_SNo x33 (minus_SNo 1)) x34) x33))(∀ x33 . x33intx9 x33 = x8 x6 (x7 x33))(∀ x33 . x33int∀ x34 . x34intx10 x33 x34 = add_SNo (x4 x33 x34) (x9 x33))(∀ x33 . x33intx11 x33 = x33)x12 = 1(∀ x33 . x33int∀ x34 . x34intx13 x33 x34 = If_i (SNoLe x33 0) x34 (x10 (x13 (add_SNo x33 (minus_SNo 1)) x34) x33))(∀ x33 . x33intx14 x33 = x13 (x11 x33) x12)(∀ x33 . x33intx15 x33 = x14 x33)(∀ x33 . x33int∀ x34 . x34intx16 x33 x34 = mul_SNo x33 x34)(∀ x33 . x33int∀ x34 . x34intx17 x33 x34 = x34)(∀ x33 . x33intx18 x33 = x33)x19 = 2x20 = mul_SNo 2 (add_SNo 2 (add_SNo 2 2))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx21 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x16 (x21 (add_SNo x33 (minus_SNo 1)) x34 x35) (x22 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx22 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x17 (x21 (add_SNo x33 (minus_SNo 1)) x34 x35) (x22 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx23 x33 = x21 (x18 x33) x19 x20)(∀ x33 . x33int∀ x34 . x34intx24 x33 x34 = mul_SNo x33 x34)(∀ x33 . x33int∀ x34 . x34intx25 x33 x34 = x34)(∀ x33 . x33intx26 x33 = x33)x27 = add_SNo 1 2x28 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx29 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x24 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35) (x30 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx30 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x25 (x29 (add_SNo x33 (minus_SNo 1)) x34 x35) (x30 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx31 x33 = x29 (x26 x33) x27 x28)(∀ x33 . x33intx32 x33 = add_SNo (mul_SNo 2 (x23 x33)) (minus_SNo (x31 x33)))∀ x33 . x33intSNoLe 0 x33x15 x33 = x32 x33
Conjecture b9605..A16188 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 . x9int∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 . x18int∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι → ι → ι . (∀ x21 . x21int∀ x22 . x22int∀ x23 . x23intx20 x21 x22 x23int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι → ι . (∀ x24 . x24int∀ x25 . x25intx23 x24 x25int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 . x25int∀ x26 . x26int∀ x27 : ι → ι → ι → ι . (∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx27 x28 x29 x30int)∀ x28 : ι → ι → ι → ι . (∀ x29 . x29int∀ x30 . x30int∀ x31 . x31intx28 x29 x30 x31int)∀ x29 : ι → ι . (∀ x30 . x30intx29 x30int)∀ x30 : ι → ι . (∀ x31 . x31intx30 x31int)(∀ x31 . x31int∀ x32 . x32intx0 x31 x32 = mul_SNo (add_SNo 2 x32) x31)x1 = 2(∀ x31 . x31intx2 x31 = x31)(∀ x31 . x31int∀ x32 . x32intx3 x31 x32 = If_i (SNoLe x31 0) x32 (x0 (x3 (add_SNo x31 (minus_SNo 1)) x32) x31))(∀ x31 . x31intx4 x31 = x3 x1 (x2 x31))(∀ x31 . x31int∀ x32 . x32intx5 x31 x32 = add_SNo (mul_SNo (mul_SNo x32 x32) x32) (x4 x31))(∀ x31 . x31int∀ x32 . x32intx6 x31 x32 = add_SNo x32 x32)(∀ x31 . x31intx7 x31 = x31)x8 = 1x9 = 2(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx10 x31 x32 x33 = If_i (SNoLe x31 0) x32 (x5 (x10 (add_SNo x31 (minus_SNo 1)) x32 x33) (x11 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx11 x31 x32 x33 = If_i (SNoLe x31 0) x33 (x6 (x10 (add_SNo x31 (minus_SNo 1)) x32 x33) (x11 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31intx12 x31 = x10 (x7 x31) x8 x9)(∀ x31 . x31intx13 x31 = x12 x31)(∀ x31 . x31int∀ x32 . x32intx14 x31 x32 = mul_SNo x31 x32)(∀ x31 . x31int∀ x32 . x32intx15 x31 x32 = x32)(∀ x31 . x31intx16 x31 = x31)x17 = add_SNo 1 2x18 = mul_SNo 2 (add_SNo 2 (add_SNo 2 2))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx19 x31 x32 x33 = If_i (SNoLe x31 0) x32 (x14 (x19 (add_SNo x31 (minus_SNo 1)) x32 x33) (x20 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx20 x31 x32 x33 = If_i (SNoLe x31 0) x33 (x15 (x19 (add_SNo x31 (minus_SNo 1)) x32 x33) (x20 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31intx21 x31 = x19 (x16 x31) x17 x18)(∀ x31 . x31int∀ x32 . x32intx22 x31 x32 = mul_SNo x31 x32)(∀ x31 . x31int∀ x32 . x32intx23 x31 x32 = x32)(∀ x31 . x31intx24 x31 = x31)x25 = 2x26 = mul_SNo 2 (add_SNo 2 2)(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx27 x31 x32 x33 = If_i (SNoLe x31 0) x32 (x22 (x27 (add_SNo x31 (minus_SNo 1)) x32 x33) (x28 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx28 x31 x32 x33 = If_i (SNoLe x31 0) x33 (x23 (x27 (add_SNo x31 (minus_SNo 1)) x32 x33) (x28 (add_SNo x31 (minus_SNo 1)) x32 x33)))(∀ x31 . x31intx29 x31 = x27 (x24 x31) x25 x26)(∀ x31 . x31intx30 x31 = add_SNo (x21 x31) (minus_SNo (x29 x31)))∀ x31 . x31intSNoLe 0 x31x13 x31 = x30 x31
Conjecture ed422..A16177 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo (add_SNo (mul_SNo 2 (add_SNo (add_SNo x28 x28) x28)) (mul_SNo (mul_SNo x29 x29) x29)) x28)(∀ x28 . x28int∀ x29 . x29intx1 x28 x29 = add_SNo x29 x29)(∀ x28 . x28intx2 x28 = x28)x3 = 0x4 = 1(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx5 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x0 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx6 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x1 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx7 x28 = x5 (x2 x28) x3 x4)(∀ x28 . x28intx8 x28 = x7 x28)(∀ x28 . x28intx9 x28 = mul_SNo (mul_SNo x28 x28) x28)x10 = 1(∀ x28 . x28intx11 x28 = add_SNo x28 x28)(∀ x28 . x28intx12 x28 = x28)x13 = 1(∀ x28 . x28int∀ x29 . x29intx14 x28 x29 = If_i (SNoLe x28 0) x29 (x11 (x14 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx15 x28 = x14 (x12 x28) x13)(∀ x28 . x28intx16 x28 = x15 x28)(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x9 (x17 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx18 x28 = x17 x10 (x16 x28))(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx20 x28 x29 = x29)(∀ x28 . x28intx21 x28 = x28)x22 = 1x23 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = add_SNo (x18 x28) (minus_SNo (x26 x28)))∀ x28 . x28intSNoLe 0 x28x8 x28 = x27 x28
Conjecture a65fc..A16175 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = mul_SNo 2 (add_SNo (add_SNo x25 x25) x25))(∀ x25 . x25intx1 x25 = x25)(∀ x25 . x25intx2 x25 = add_SNo x25 x25)(∀ x25 . x25intx3 x25 = x25)x4 = 2(∀ x25 . x25int∀ x26 . x26intx5 x25 x26 = If_i (SNoLe x25 0) x26 (x2 (x5 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx6 x25 = x5 (x3 x25) x4)(∀ x25 . x25intx7 x25 = add_SNo (x6 x25) (minus_SNo 1))(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x1 x25) (x7 x25))(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx12 x25 x26 = x26)(∀ x25 . x25intx13 x25 = x25)(∀ x25 . x25intx14 x25 = add_SNo x25 x25)(∀ x25 . x25intx15 x25 = x25)x16 = 2(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = If_i (SNoLe x25 0) x26 (x14 (x17 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx18 x25 = x17 (x15 x25) x16)(∀ x25 . x25intx19 x25 = add_SNo (x18 x25) (minus_SNo 1))x20 = add_SNo 2 (add_SNo 2 2)(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x11 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x12 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x13 x25) (x19 x25) x20)(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 018b3..A16174 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 . x6int∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι → ι . (∀ x22 . x22int∀ x23 . x23intx21 x22 x23int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 . x24int∀ x25 . x25int∀ x26 : ι → ι → ι → ι . (∀ x27 . x27int∀ x28 . x28int∀ x29 . x29intx26 x27 x28 x29int)∀ x27 : ι → ι → ι → ι . (∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx27 x28 x29 x30int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 : ι → ι . (∀ x30 . x30intx29 x30int)(∀ x30 . x30intx0 x30 = mul_SNo 2 (add_SNo (add_SNo x30 x30) x30))(∀ x30 . x30int∀ x31 . x31intx1 x30 x31 = x31)x2 = 1(∀ x30 . x30int∀ x31 . x31intx3 x30 x31 = If_i (SNoLe x30 0) x31 (x0 (x3 (add_SNo x30 (minus_SNo 1)) x31)))(∀ x30 . x30int∀ x31 . x31intx4 x30 x31 = x3 (x1 x30 x31) x2)(∀ x30 . x30int∀ x31 . x31intx5 x30 x31 = mul_SNo (add_SNo 2 x31) x30)x6 = 2(∀ x30 . x30intx7 x30 = x30)(∀ x30 . x30int∀ x31 . x31intx8 x30 x31 = If_i (SNoLe x30 0) x31 (x5 (x8 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30intx9 x30 = x8 x6 (x7 x30))(∀ x30 . x30int∀ x31 . x31intx10 x30 x31 = add_SNo (add_SNo (x4 x30 x31) (minus_SNo x30)) (x9 x30))(∀ x30 . x30intx11 x30 = x30)x12 = 1(∀ x30 . x30int∀ x31 . x31intx13 x30 x31 = If_i (SNoLe x30 0) x31 (x10 (x13 (add_SNo x30 (minus_SNo 1)) x31) x30))(∀ x30 . x30intx14 x30 = x13 (x11 x30) x12)(∀ x30 . x30intx15 x30 = x14 x30)(∀ x30 . x30intx16 x30 = add_SNo 2 (add_SNo (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x30 x30)) x30)) x30))(∀ x30 . x30intx17 x30 = x30)x18 = 2(∀ x30 . x30int∀ x31 . x31intx19 x30 x31 = If_i (SNoLe x30 0) x31 (x16 (x19 (add_SNo x30 (minus_SNo 1)) x31)))(∀ x30 . x30intx20 x30 = x19 (x17 x30) x18)(∀ x30 . x30int∀ x31 . x31intx21 x30 x31 = add_SNo 1 (mul_SNo x30 x31))(∀ x30 . x30int∀ x31 . x31intx22 x30 x31 = x31)(∀ x30 . x30intx23 x30 = x30)x24 = 1x25 = add_SNo 2 (add_SNo 2 2)(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx26 x30 x31 x32 = If_i (SNoLe x30 0) x31 (x21 (x26 (add_SNo x30 (minus_SNo 1)) x31 x32) (x27 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30int∀ x31 . x31int∀ x32 . x32intx27 x30 x31 x32 = If_i (SNoLe x30 0) x32 (x22 (x26 (add_SNo x30 (minus_SNo 1)) x31 x32) (x27 (add_SNo x30 (minus_SNo 1)) x31 x32)))(∀ x30 . x30intx28 x30 = x26 (x23 x30) x24 x25)(∀ x30 . x30intx29 x30 = add_SNo (x20 x30) (minus_SNo (x28 x30)))∀ x30 . x30intSNoLe 0 x30x15 x30 = x29 x30
Conjecture 669d9..A16172 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28intx0 x28 = add_SNo (add_SNo x28 x28) x28)(∀ x28 . x28int∀ x29 . x29intx1 x28 x29 = add_SNo x29 x29)x2 = 1(∀ x28 . x28int∀ x29 . x29intx3 x28 x29 = If_i (SNoLe x28 0) x29 (x0 (x3 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28int∀ x29 . x29intx4 x28 x29 = x3 (x1 x28 x29) x2)(∀ x28 . x28int∀ x29 . x29intx5 x28 x29 = add_SNo (x4 x28 x29) (mul_SNo 2 (add_SNo (add_SNo x28 x28) x28)))(∀ x28 . x28intx6 x28 = x28)x7 = 1(∀ x28 . x28int∀ x29 . x29intx8 x28 x29 = If_i (SNoLe x28 0) x29 (x5 (x8 (add_SNo x28 (minus_SNo 1)) x29) x28))(∀ x28 . x28intx9 x28 = x8 (x6 x28) x7)(∀ x28 . x28intx10 x28 = x9 x28)(∀ x28 . x28int∀ x29 . x29intx11 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx12 x28 x29 = x29)(∀ x28 . x28intx13 x28 = x28)x14 = add_SNo 1 2x15 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx16 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x11 (x16 (add_SNo x28 (minus_SNo 1)) x29 x30) (x17 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx17 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x12 (x16 (add_SNo x28 (minus_SNo 1)) x29 x30) (x17 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx18 x28 = x16 (x13 x28) x14 x15)(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx20 x28 x29 = x29)(∀ x28 . x28intx21 x28 = x28)x22 = 2x23 = add_SNo 2 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = add_SNo (x18 x28) (minus_SNo (x26 x28)))∀ x28 . x28intSNoLe 0 x28x10 x28 = x27 x28
Conjecture 18139..A161729 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)(∀ x23 . x23int∀ x24 . x24intx0 x23 x24 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo (add_SNo x23 x23) x23)) x24))(∀ x23 . x23int∀ x24 . x24intx1 x23 x24 = mul_SNo 2 (add_SNo (add_SNo x24 (minus_SNo x23)) x24))(∀ x23 . x23intx2 x23 = x23)x3 = 1x4 = 2(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx5 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x0 (x5 (add_SNo x23 (minus_SNo 1)) x24 x25) (x6 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx6 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x1 (x5 (add_SNo x23 (minus_SNo 1)) x24 x25) (x6 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx7 x23 = x5 (x2 x23) x3 x4)(∀ x23 . x23intx8 x23 = x7 x23)(∀ x23 . x23int∀ x24 . x24intx9 x23 x24 = add_SNo (mul_SNo 2 (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x23 (minus_SNo x24))) (minus_SNo x24)))) (minus_SNo x24))(∀ x23 . x23intx10 x23 = x23)(∀ x23 . x23intx11 x23 = add_SNo x23 (minus_SNo 1))(∀ x23 . x23intx12 x23 = If_i (SNoLe x23 0) 1 (mul_SNo 2 (add_SNo 2 2)))x13 = 1(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx14 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x9 (x14 (add_SNo x23 (minus_SNo 1)) x24 x25) (x15 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx15 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x10 (x14 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx16 x23 = x14 (x11 x23) (x12 x23) x13)(∀ x23 . x23intx17 x23 = add_SNo x23 x23)(∀ x23 . x23intx18 x23 = x23)x19 = 1(∀ x23 . x23int∀ x24 . x24intx20 x23 x24 = If_i (SNoLe x23 0) x24 (x17 (x20 (add_SNo x23 (minus_SNo 1)) x24)))(∀ x23 . x23intx21 x23 = x20 (x18 x23) x19)(∀ x23 . x23intx22 x23 = mul_SNo (x16 x23) (x21 x23))∀ x23 . x23intSNoLe 0 x23x8 x23 = x22 x23
Conjecture 818d8..A16170 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 . x22int∀ x23 . x23int∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo (mul_SNo 2 (add_SNo (add_SNo x28 x28) x28)) (mul_SNo (mul_SNo x29 x29) x29))(∀ x28 . x28int∀ x29 . x29intx1 x28 x29 = add_SNo x29 x29)(∀ x28 . x28intx2 x28 = x28)x3 = 1x4 = 2(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx5 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x0 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx6 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x1 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx7 x28 = x5 (x2 x28) x3 x4)(∀ x28 . x28intx8 x28 = x7 x28)(∀ x28 . x28intx9 x28 = mul_SNo (mul_SNo x28 x28) x28)x10 = 1(∀ x28 . x28intx11 x28 = add_SNo x28 x28)(∀ x28 . x28intx12 x28 = x28)x13 = 1(∀ x28 . x28int∀ x29 . x29intx14 x28 x29 = If_i (SNoLe x28 0) x29 (x11 (x14 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx15 x28 = x14 (x12 x28) x13)(∀ x28 . x28intx16 x28 = x15 x28)(∀ x28 . x28int∀ x29 . x29intx17 x28 x29 = If_i (SNoLe x28 0) x29 (x9 (x17 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx18 x28 = x17 x10 (x16 x28))(∀ x28 . x28int∀ x29 . x29intx19 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx20 x28 x29 = x29)(∀ x28 . x28intx21 x28 = x28)x22 = add_SNo 1 2x23 = add_SNo 2 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx24 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x19 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx25 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x20 (x24 (add_SNo x28 (minus_SNo 1)) x29 x30) (x25 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx26 x28 = x24 (x21 x28) x22 x23)(∀ x28 . x28intx27 x28 = add_SNo (mul_SNo 2 (mul_SNo 2 (x18 x28))) (minus_SNo (x26 x28)))∀ x28 . x28intSNoLe 0 x28x8 x28 = x27 x28
Conjecture 6c34d..A16169 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι → ι . (∀ x19 . x19int∀ x20 . x20intx18 x19 x20int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 . x21int∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι → ι → ι . (∀ x24 . x24int∀ x25 . x25int∀ x26 . x26intx23 x24 x25 x26int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)(∀ x26 . x26int∀ x27 . x27intx0 x26 x27 = add_SNo (add_SNo (mul_SNo 2 (add_SNo (add_SNo x26 x26) x26)) x26) x27)(∀ x26 . x26int∀ x27 . x27intx1 x26 x27 = mul_SNo 2 (add_SNo (add_SNo x27 x27) x27))(∀ x26 . x26intx2 x26 = x26)x3 = 0x4 = 1(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx5 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x0 (x5 (add_SNo x26 (minus_SNo 1)) x27 x28) (x6 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx6 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x1 (x5 (add_SNo x26 (minus_SNo 1)) x27 x28) (x6 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx7 x26 = x5 (x2 x26) x3 x4)(∀ x26 . x26intx8 x26 = x7 x26)(∀ x26 . x26int∀ x27 . x27intx9 x26 x27 = mul_SNo x26 x27)(∀ x26 . x26int∀ x27 . x27intx10 x26 x27 = x27)(∀ x26 . x26intx11 x26 = x26)x12 = 1x13 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx14 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x9 (x14 (add_SNo x26 (minus_SNo 1)) x27 x28) (x15 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx15 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x10 (x14 (add_SNo x26 (minus_SNo 1)) x27 x28) (x15 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx16 x26 = x14 (x11 x26) x12 x13)(∀ x26 . x26int∀ x27 . x27intx17 x26 x27 = mul_SNo x26 x27)(∀ x26 . x26int∀ x27 . x27intx18 x26 x27 = x27)(∀ x26 . x26intx19 x26 = x26)x20 = 1x21 = add_SNo 2 (add_SNo 2 2)(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx22 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x17 (x22 (add_SNo x26 (minus_SNo 1)) x27 x28) (x23 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx23 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x18 (x22 (add_SNo x26 (minus_SNo 1)) x27 x28) (x23 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx24 x26 = x22 (x19 x26) x20 x21)(∀ x26 . x26intx25 x26 = add_SNo (x16 x26) (minus_SNo (x24 x26)))∀ x26 . x26intSNoLe 0 x26x8 x26 = x25 x26
Conjecture e76f8..A16164 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = add_SNo (mul_SNo 2 (add_SNo x25 x25)) x25)(∀ x25 . x25intx1 x25 = x25)(∀ x25 . x25intx2 x25 = add_SNo x25 x25)(∀ x25 . x25intx3 x25 = x25)x4 = 2(∀ x25 . x25int∀ x26 . x26intx5 x25 x26 = If_i (SNoLe x25 0) x26 (x2 (x5 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx6 x25 = x5 (x3 x25) x4)(∀ x25 . x25intx7 x25 = add_SNo (x6 x25) (minus_SNo 1))(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x1 x25) (x7 x25))(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx12 x25 x26 = x26)(∀ x25 . x25intx13 x25 = x25)(∀ x25 . x25intx14 x25 = add_SNo x25 x25)(∀ x25 . x25intx15 x25 = x25)x16 = 2(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = If_i (SNoLe x25 0) x26 (x14 (x17 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx18 x25 = x17 (x15 x25) x16)(∀ x25 . x25intx19 x25 = add_SNo (x18 x25) (minus_SNo 1))x20 = add_SNo 1 (add_SNo 2 2)(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x11 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x12 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x13 x25) (x19 x25) x20)(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture cba91..A16149 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 . x18int∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 . x21int∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)(∀ x28 . x28int∀ x29 . x29intx0 x28 x29 = add_SNo (mul_SNo 2 (add_SNo (add_SNo x28 x28) x28)) (mul_SNo x29 x29))(∀ x28 . x28int∀ x29 . x29intx1 x28 x29 = add_SNo x29 x29)(∀ x28 . x28intx2 x28 = x28)x3 = 1x4 = 2(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx5 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x0 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx6 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x1 (x5 (add_SNo x28 (minus_SNo 1)) x29 x30) (x6 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx7 x28 = x5 (x2 x28) x3 x4)(∀ x28 . x28intx8 x28 = x7 x28)(∀ x28 . x28int∀ x29 . x29intx9 x28 x29 = mul_SNo x28 x29)(∀ x28 . x28int∀ x29 . x29intx10 x28 x29 = x29)(∀ x28 . x28intx11 x28 = x28)x12 = 1x13 = add_SNo 2 (add_SNo 2 2)(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx14 x28 x29 x30 = If_i (SNoLe x28 0) x29 (x9 (x14 (add_SNo x28 (minus_SNo 1)) x29 x30) (x15 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28int∀ x29 . x29int∀ x30 . x30intx15 x28 x29 x30 = If_i (SNoLe x28 0) x30 (x10 (x14 (add_SNo x28 (minus_SNo 1)) x29 x30) (x15 (add_SNo x28 (minus_SNo 1)) x29 x30)))(∀ x28 . x28intx16 x28 = x14 (x11 x28) x12 x13)(∀ x28 . x28intx17 x28 = mul_SNo x28 x28)x18 = 1(∀ x28 . x28intx19 x28 = add_SNo x28 x28)(∀ x28 . x28intx20 x28 = x28)x21 = 1(∀ x28 . x28int∀ x29 . x29intx22 x28 x29 = If_i (SNoLe x28 0) x29 (x19 (x22 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx23 x28 = x22 (x20 x28) x21)(∀ x28 . x28intx24 x28 = x23 x28)(∀ x28 . x28int∀ x29 . x29intx25 x28 x29 = If_i (SNoLe x28 0) x29 (x17 (x25 (add_SNo x28 (minus_SNo 1)) x29)))(∀ x28 . x28intx26 x28 = x25 x18 (x24 x28))(∀ x28 . x28intx27 x28 = add_SNo (mul_SNo (add_SNo 1 2) (x16 x28)) (minus_SNo (mul_SNo 2 (x26 x28))))∀ x28 . x28intSNoLe 0 x28x8 x28 = x27 x28
Conjecture c94d8..A161495 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 . x21int∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι → ι → ι . (∀ x24 . x24int∀ x25 . x25int∀ x26 . x26intx23 x24 x25 x26int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι → ι . (∀ x26 . x26int∀ x27 . x27intx25 x26 x27int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)∀ x28 . x28int∀ x29 . x29int∀ x30 : ι → ι → ι → ι . (∀ x31 . x31int∀ x32 . x32int∀ x33 . x33intx30 x31 x32 x33int)∀ x31 : ι → ι → ι → ι . (∀ x32 . x32int∀ x33 . x33int∀ x34 . x34intx31 x32 x33 x34int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)∀ x33 : ι → ι . (∀ x34 . x34intx33 x34int)(∀ x34 . x34int∀ x35 . x35intx0 x34 x35 = add_SNo (add_SNo (mul_SNo 2 (add_SNo x34 x34)) (minus_SNo x35)) x34)(∀ x34 . x34intx1 x34 = x34)(∀ x34 . x34intx2 x34 = x34)x3 = 1x4 = 0(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx5 x34 x35 x36 = If_i (SNoLe x34 0) x35 (x0 (x5 (add_SNo x34 (minus_SNo 1)) x35 x36) (x6 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx6 x34 x35 x36 = If_i (SNoLe x34 0) x36 (x1 (x5 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34intx7 x34 = x5 (x2 x34) x3 x4)(∀ x34 . x34int∀ x35 . x35intx8 x34 x35 = add_SNo x34 x35)(∀ x34 . x34intx9 x34 = x34)(∀ x34 . x34intx10 x34 = add_SNo 1 (add_SNo x34 x34))x11 = 1x12 = 2(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx13 x34 x35 x36 = If_i (SNoLe x34 0) x35 (x8 (x13 (add_SNo x34 (minus_SNo 1)) x35 x36) (x14 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx14 x34 x35 x36 = If_i (SNoLe x34 0) x36 (x9 (x13 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34intx15 x34 = x13 (x10 x34) x11 x12)(∀ x34 . x34intx16 x34 = mul_SNo (x7 x34) (x15 x34))(∀ x34 . x34int∀ x35 . x35intx17 x34 x35 = add_SNo (add_SNo (mul_SNo 2 (add_SNo x34 x34)) (minus_SNo x35)) x34)(∀ x34 . x34intx18 x34 = x34)(∀ x34 . x34intx19 x34 = add_SNo x34 (minus_SNo 1))(∀ x34 . x34intx20 x34 = add_SNo (If_i (SNoLe x34 0) 0 (add_SNo 2 2)) 1)x21 = 1(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx22 x34 x35 x36 = If_i (SNoLe x34 0) x35 (x17 (x22 (add_SNo x34 (minus_SNo 1)) x35 x36) (x23 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx23 x34 x35 x36 = If_i (SNoLe x34 0) x36 (x18 (x22 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34intx24 x34 = x22 (x19 x34) (x20 x34) x21)(∀ x34 . x34int∀ x35 . x35intx25 x34 x35 = add_SNo x34 x35)(∀ x34 . x34intx26 x34 = x34)(∀ x34 . x34intx27 x34 = add_SNo x34 x34)x28 = add_SNo 1 2x29 = 1(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx30 x34 x35 x36 = If_i (SNoLe x34 0) x35 (x25 (x30 (add_SNo x34 (minus_SNo 1)) x35 x36) (x31 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34int∀ x35 . x35int∀ x36 . x36intx31 x34 x35 x36 = If_i (SNoLe x34 0) x36 (x26 (x30 (add_SNo x34 (minus_SNo 1)) x35 x36)))(∀ x34 . x34intx32 x34 = x30 (x27 x34) x28 x29)(∀ x34 . x34intx33 x34 = mul_SNo (x24 x34) (x32 x34))∀ x34 . x34intSNoLe 0 x34x16 x34 = x33 x34
Conjecture a318a..A16137 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 : ι → ι → ι → ι . (∀ x22 . x22int∀ x23 . x23int∀ x24 . x24intx21 x22 x23 x24int)∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = add_SNo (add_SNo x25 x25) x25)(∀ x25 . x25intx1 x25 = x25)(∀ x25 . x25intx2 x25 = add_SNo x25 x25)(∀ x25 . x25intx3 x25 = x25)x4 = 2(∀ x25 . x25int∀ x26 . x26intx5 x25 x26 = If_i (SNoLe x25 0) x26 (x2 (x5 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx6 x25 = x5 (x3 x25) x4)(∀ x25 . x25intx7 x25 = add_SNo (x6 x25) (minus_SNo 1))(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x1 x25) (x7 x25))(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25int∀ x26 . x26intx11 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx12 x25 x26 = x26)(∀ x25 . x25intx13 x25 = x25)(∀ x25 . x25intx14 x25 = add_SNo x25 x25)(∀ x25 . x25intx15 x25 = x25)x16 = 2(∀ x25 . x25int∀ x26 . x26intx17 x25 x26 = If_i (SNoLe x25 0) x26 (x14 (x17 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx18 x25 = x17 (x15 x25) x16)(∀ x25 . x25intx19 x25 = add_SNo (x18 x25) (minus_SNo 1))x20 = add_SNo 1 2(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx21 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x11 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx22 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x12 (x21 (add_SNo x25 (minus_SNo 1)) x26 x27) (x22 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx23 x25 = x21 (x13 x25) (x19 x25) x20)(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture b21da..A16136 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι → ι . (∀ x19 . x19int∀ x20 . x20int∀ x21 . x21intx18 x19 x20 x21int)∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = add_SNo x25 x25)(∀ x25 . x25intx1 x25 = x25)(∀ x25 . x25intx2 x25 = add_SNo 1 (mul_SNo 2 (add_SNo (add_SNo x25 x25) x25)))(∀ x25 . x25intx3 x25 = x25)x4 = 1(∀ x25 . x25int∀ x26 . x26intx5 x25 x26 = If_i (SNoLe x25 0) x26 (x2 (x5 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx6 x25 = x5 (x3 x25) x4)(∀ x25 . x25intx7 x25 = x6 x25)(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x1 x25) (x7 x25))(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = add_SNo x25 x25)(∀ x25 . x25intx12 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx13 x25 x26 = add_SNo 1 (mul_SNo x25 x26))(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = x26)(∀ x25 . x25intx15 x25 = x25)x16 = 1x17 = add_SNo 2 (add_SNo 2 2)(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx18 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x13 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx19 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x14 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx20 x25 = x18 (x15 x25) x16 x17)(∀ x25 . x25intx21 x25 = x20 x25)(∀ x25 . x25int∀ x26 . x26intx22 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x22 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx23 x25 = x22 (x12 x25) (x21 x25))(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 2e20b..A16133 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (add_SNo x20 x20) x20)(∀ x20 . x20int∀ x21 . x21intx1 x20 x21 = add_SNo x21 x21)x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20int∀ x21 . x21intx4 x20 x21 = x3 (x1 x20 x21) x2)(∀ x20 . x20int∀ x21 . x21intx5 x20 x21 = add_SNo (add_SNo (x4 x20 x21) x20) x20)(∀ x20 . x20intx6 x20 = x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = x9 x20)(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = add_SNo (add_SNo (mul_SNo x21 x21) x20) x20)(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = add_SNo (add_SNo x21 x21) x21)(∀ x20 . x20intx13 x20 = x20)x14 = 1x15 = add_SNo 1 2(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 17e09..A16125 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (add_SNo 2 x21) x20)x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo 1 (x4 x20))(∀ x20 . x20intx6 x20 = x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = x9 x20)(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = add_SNo 1 (mul_SNo x20 x21))(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 1x15 = mul_SNo 2 (add_SNo 2 (add_SNo 2 2))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 82474..A16123 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι → ι . (∀ x13 . x13int∀ x14 . x14intx12 x13 x14int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 . x14int∀ x15 . x15int∀ x16 : ι → ι → ι → ι . (∀ x17 . x17int∀ x18 . x18int∀ x19 . x19intx16 x17 x18 x19int)∀ x17 : ι → ι → ι → ι . (∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx17 x18 x19 x20int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20int∀ x21 . x21intx0 x20 x21 = mul_SNo (add_SNo 2 x21) x20)x1 = 2(∀ x20 . x20intx2 x20 = x20)(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21) x20))(∀ x20 . x20intx4 x20 = x3 x1 (x2 x20))(∀ x20 . x20intx5 x20 = add_SNo 1 (add_SNo (x4 x20) (minus_SNo x20)))(∀ x20 . x20intx6 x20 = x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = If_i (SNoLe x20 0) x21 (x5 (x8 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx9 x20 = x8 (x6 x20) x7)(∀ x20 . x20intx10 x20 = x9 x20)(∀ x20 . x20int∀ x21 . x21intx11 x20 x21 = add_SNo 1 (mul_SNo x20 x21))(∀ x20 . x20int∀ x21 . x21intx12 x20 x21 = x21)(∀ x20 . x20intx13 x20 = x20)x14 = 1x15 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx16 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x11 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx17 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x12 (x16 (add_SNo x20 (minus_SNo 1)) x21 x22) (x17 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx18 x20 = x16 (x13 x20) x14 x15)(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x10 x20 = x19 x20
Conjecture 52700..A161124 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15int∀ x16 . x16intx0 x15 x16 = add_SNo (mul_SNo 2 (mul_SNo x15 x16)) (minus_SNo x15))(∀ x15 . x15intx1 x15 = x15)(∀ x15 . x15intx2 x15 = x15)(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16) x15))(∀ x15 . x15intx4 x15 = x3 (x1 x15) (x2 x15))(∀ x15 . x15intx5 x15 = mul_SNo (x4 x15) x15)(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = add_SNo 2 x16)(∀ x15 . x15intx8 x15 = add_SNo x15 (minus_SNo 1))(∀ x15 . x15intx9 x15 = x15)x10 = 1(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) (x9 x15) x10)(∀ x15 . x15intx14 x15 = mul_SNo (add_SNo (mul_SNo 2 (mul_SNo x15 x15)) (minus_SNo x15)) (x13 x15))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture c3218..A161120 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15int∀ x16 . x16intx0 x15 x16 = add_SNo (mul_SNo 2 (mul_SNo x15 x16)) x15)(∀ x15 . x15intx1 x15 = add_SNo x15 (minus_SNo 2))(∀ x15 . x15intx2 x15 = x15)(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16) x15))(∀ x15 . x15intx4 x15 = x3 (x1 x15) (x2 x15))(∀ x15 . x15intx5 x15 = mul_SNo (x4 x15) x15)(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = add_SNo 2 x16)(∀ x15 . x15intx8 x15 = add_SNo x15 (minus_SNo 2))(∀ x15 . x15intx9 x15 = x15)x10 = add_SNo 1 2(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) (x9 x15) x10)(∀ x15 . x15intx14 x15 = mul_SNo x15 (x13 x15))∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15