Search for blocks/addresses/...
Proofgold Asset
asset id
555dcc322950f6181a741d29d7c71fbc597eaf66469fc61081c7cd937103c2d8
asset hash
37fc26678c7e402e67427b32c71fe3b3b85eb34b3ea6f43b501bbf5243cb6a9c
bday / block
18037
tx
62734..
preasset
doc published by
Pr4zB..
Definition
Church13_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x7
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x8
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x9
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x10
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x11
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x12
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x13
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
x14
)
⟶
x1
x0
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Param
u4
:
ι
Param
u5
:
ι
Param
u6
:
ι
Param
u7
:
ι
Param
u8
:
ι
Param
u9
:
ι
Param
u10
:
ι
Param
u11
:
ι
Param
u12
:
ι
Definition
TwoRamseyGraph_3_5_Church13
:=
λ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
x3
)
(
x1
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
x3
)
(
x1
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
x2
)
(
x1
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
x3
)
(
x1
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
x3
)
(
x1
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
x3
)
(
x1
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
x2
)
(
x1
x2
x3
x3
x3
x2
x3
x3
x2
x3
x3
x3
x2
x3
)
Definition
TwoRamseyGraph_3_5_13
:=
λ x0 x1 .
∀ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x2
⟶
Church13_p
x3
⟶
x0
=
x2
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
x1
=
x3
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
TwoRamseyGraph_3_5_Church13
x2
x3
=
λ x5 x6 .
x5
Known
b4828..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
x1
x0
Theorem
09b0c..
:
∀ x0 x1 .
TwoRamseyGraph_3_5_13
x0
x1
⟶
TwoRamseyGraph_3_5_13
x1
x0
(proof)
Param
u13
:
ι
Known
6de8d..
:
∀ x0 .
x0
∈
u13
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
Known
fe032..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x0
)
Known
19e27..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x1
)
Known
f85ed..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x2
)
Known
82a17..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x3
)
Known
59a5f..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x4
)
Known
5ca83..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x5
)
Known
40dec..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x6
)
Known
41eb8..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x7
)
Known
42638..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x8
)
Known
34c89..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x9
)
Known
bf246..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x10
)
Known
7e49d..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x11
)
Known
cc205..
:
Church13_p
(
λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
x12
)
Theorem
783ed..
:
∀ x0 .
x0
∈
u13
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x2
⟶
x0
=
x2
0
u1
u2
u3
u4
u5
u6
u7
u8
u9
u10
u11
u12
⟶
x1
)
⟶
x1
(proof)
Definition
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
Definition
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
Known
1e494..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
x0
)
Known
b9fc1..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
x0
)
Known
85fe9..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
x0
)
(
Church13_perm_12_0_1_2_3_4_5_6_7_8_9_10_11
x1
)
Definition
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
Definition
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
Known
92c84..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
x0
)
Known
4d61d..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
x0
)
Known
db65d..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
x0
)
(
Church13_perm_11_12_0_1_2_3_4_5_6_7_8_9_10
x1
)
Definition
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
Definition
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
Known
091d5..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
x0
)
Known
ab4f5..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
x0
)
Known
6d980..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
x0
)
(
Church13_perm_10_11_12_0_1_2_3_4_5_6_7_8_9
x1
)
Definition
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x5
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
Definition
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
30073..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
x0
)
Known
074b4..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
x0
)
Known
9e4f1..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
x0
)
(
Church13_perm_9_10_11_12_0_1_2_3_4_5_6_7_8
x1
)
Definition
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x6
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
Definition
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
x8
Known
ab802..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
x0
)
Known
470a8..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
x0
)
Known
d457e..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
x0
)
(
Church13_perm_8_9_10_11_12_0_1_2_3_4_5_6_7
x1
)
Definition
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x7
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
Definition
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
x0
x8
x9
x10
x11
x12
x13
x1
x2
x3
x4
x5
x6
x7
Known
099c4..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
x0
)
Known
0dab4..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
(
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
x0
)
Known
a3398..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
x0
)
(
Church13_perm_7_8_9_10_11_12_0_1_2_3_4_5_6
x1
)
Known
696fa..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
x0
)
(
Church13_perm_6_7_8_9_10_11_12_0_1_2_3_4_5
x1
)
Known
87eb0..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
x0
)
(
Church13_perm_5_6_7_8_9_10_11_12_0_1_2_3_4
x1
)
Known
c0039..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
x0
)
(
Church13_perm_4_5_6_7_8_9_10_11_12_0_1_2_3
x1
)
Known
23927..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
x0
)
(
Church13_perm_3_4_5_6_7_8_9_10_11_12_0_1_2
x1
)
Known
9e139..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
x0
)
(
Church13_perm_2_3_4_5_6_7_8_9_10_11_12_0_1
x1
)
Known
00a87..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
TwoRamseyGraph_3_5_Church13
x0
x1
=
TwoRamseyGraph_3_5_Church13
(
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
x0
)
(
Church13_perm_1_2_3_4_5_6_7_8_9_10_11_12_0
x1
)
Theorem
b9bfd..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
∀ x1 : ο .
(
∀ x2 x3 :
(
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x4
⟶
Church13_p
(
x2
x4
)
)
⟶
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x4
⟶
Church13_p
(
x3
x4
)
)
⟶
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x2
(
x3
x4
)
=
x4
)
⟶
(
∀ x4 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x3
(
x2
x4
)
=
x4
)
⟶
(
∀ x4 x5 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x4
⟶
Church13_p
x5
⟶
TwoRamseyGraph_3_5_Church13
x4
x5
=
TwoRamseyGraph_3_5_Church13
(
x2
x4
)
(
x2
x5
)
)
⟶
(
x2
x0
=
λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
x5
)
⟶
x1
)
⟶
x1
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
768c1..
:
(
(
λ x1 x2 .
x2
)
=
λ x1 x2 .
x1
)
⟶
∀ x0 : ο .
x0
Theorem
37cbe..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
(
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x3
)
=
x0
⟶
∀ x2 : ο .
x2
)
⟶
(
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x3
)
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
(
TwoRamseyGraph_3_5_Church13
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x3
)
x0
=
λ x3 x4 .
x3
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x1
=
λ x3 x4 .
x3
)
⟶
(
TwoRamseyGraph_3_5_Church13
(
λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x3
)
x1
=
λ x3 x4 .
x3
)
⟶
False
(proof)
Theorem
b83f8..
:
∀ x0 x1 x2 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church13_p
x0
⟶
Church13_p
x1
⟶
Church13_p
x2
⟶
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x1
=
λ x4 x5 .
x4
)
⟶
(
TwoRamseyGraph_3_5_Church13
x1
x2
=
λ x4 x5 .
x4
)
⟶
(
TwoRamseyGraph_3_5_Church13
x0
x2
=
λ x4 x5 .
x4
)
⟶
False
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
f03aa..
:
∀ x0 .
atleastp
3
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
(
x2
=
x3
⟶
∀ x5 : ο .
x5
)
⟶
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
)
⟶
x1
Theorem
0ff84..
:
∀ x0 .
x0
⊆
u13
⟶
atleastp
u3
x0
⟶
not
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
TwoRamseyGraph_3_5_13
x1
x2
)
(proof)