Search for blocks/addresses/...
Proofgold Asset
asset id
8cfaa0e4b26c2484f4f9ba6f6ea7738cf6bd441cdb44eb982f44e3c418f61585
asset hash
383ea3320d4125a9351a72fe21873cdaa3ce953dbcb91c7a8d6685f65d3ab3fa
bday / block
3831
tx
ab965..
preasset
doc published by
PrGxv..
Theorem
eq_i_tra
:
∀ x0 x1 x2 .
x0
=
x1
⟶
x1
=
x2
⟶
x0
=
x2
(proof)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Param
4ae4a..
:
ι
→
ι
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Known
Subq_ref
:
∀ x0 .
Subq
x0
x0
Theorem
9aba9..
:
∀ x0 x1 .
TransSet
x1
⟶
prim1
x0
(
4ae4a..
x1
)
⟶
Subq
x0
x1
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
eb51d..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
(
x2
x3
)
=
x3
)
⟶
94f9e..
(
94f9e..
x0
x2
)
x1
=
x0
(proof)
Theorem
2ed15..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
x1
(
x1
x2
)
=
x2
)
⟶
94f9e..
(
94f9e..
x0
x1
)
x1
=
x0
(proof)
Param
80242..
:
ι
→
ο
Param
099f3..
:
ι
→
ι
→
ο
Known
41905..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
or
(
or
(
099f3..
x0
x1
)
(
x0
=
x1
)
)
(
099f3..
x1
x0
)
Theorem
bbdbf..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 : ο .
(
099f3..
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
099f3..
x1
x0
⟶
x2
)
⟶
x2
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
02b90..
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
prim1
x2
x0
⟶
80242..
x2
)
(
∀ x2 .
prim1
x2
x1
⟶
80242..
x2
)
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
Param
02a50..
:
ι
→
ι
→
ι
Param
e4431..
:
ι
→
ι
Param
0ac37..
:
ι
→
ι
→
ι
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Param
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
9b3fd..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
and
(
and
(
and
(
and
(
80242..
(
02a50..
x0
x1
)
)
(
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x2 .
4ae4a..
(
e4431..
x2
)
)
)
(
a842e..
x1
(
λ x2 .
4ae4a..
(
e4431..
x2
)
)
)
)
)
)
)
(
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
)
)
(
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
)
)
(
∀ x2 .
80242..
x2
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x2
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x2
)
)
Theorem
9ecaa..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 : ο .
(
80242..
(
02a50..
x0
x1
)
⟶
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x3 .
4ae4a..
(
e4431..
x3
)
)
)
(
a842e..
x1
(
λ x3 .
4ae4a..
(
e4431..
x3
)
)
)
)
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
(
02a50..
x0
x1
)
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
(
02a50..
x0
x1
)
x3
)
⟶
(
∀ x3 .
80242..
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
x3
)
⟶
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
x3
x4
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x3
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
(proof)
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Known
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
prim1
x0
x1
)
(
Subq
x1
x0
)
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
c47c0..
:
∀ x0 .
not
(
099f3..
x0
x0
)
Param
fe4bb..
:
ι
→
ι
→
ο
Known
c5dec..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
fe4bb..
x1
x2
⟶
099f3..
x0
x2
Known
e3ccf..
:
∀ x0 .
ordinal
x0
⟶
80242..
x0
Known
f1fea..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
Subq
x0
x1
⟶
fe4bb..
x0
x1
Theorem
5f6c1..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
099f3..
x0
x1
⟶
prim1
x0
x1
(proof)
Known
45d06..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
fe4bb..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
Known
44eea..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
099f3..
x1
x0
Theorem
899f5..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
fe4bb..
x0
x1
⟶
Subq
x0
x1
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
56ded..
:
ι
→
ι
Definition
23e07..
:=
λ x0 .
1216a..
(
56ded..
(
e4431..
x0
)
)
(
λ x1 .
099f3..
x1
x0
)
Known
572ea..
:
∀ x0 .
∀ x1 :
ι → ο
.
Subq
(
1216a..
x0
x1
)
x0
Theorem
e1ffe..
:
∀ x0 .
Subq
(
23e07..
x0
)
(
56ded..
(
e4431..
x0
)
)
(proof)
Definition
5246e..
:=
λ x0 .
1216a..
(
56ded..
(
e4431..
x0
)
)
(
099f3..
x0
)
Theorem
f4ff0..
:
∀ x0 .
Subq
(
5246e..
x0
)
(
56ded..
(
e4431..
x0
)
)
(proof)
Known
cbec9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
x2
)
⟶
x2
Known
b50ea..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
prim1
x0
(
56ded..
(
e4431..
x1
)
)
Param
1beb9..
:
ι
→
ι
→
ο
Known
bfaa9..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
∀ x2 : ο .
(
prim1
(
e4431..
x1
)
x0
⟶
ordinal
(
e4431..
x1
)
⟶
80242..
x1
⟶
1beb9..
(
e4431..
x1
)
x1
⟶
x2
)
⟶
x2
Known
f5194..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
prim1
x1
(
23e07..
x0
)
Known
c0742..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
x0
⟶
099f3..
x1
x0
Known
aab4f..
:
∀ x0 .
ordinal
x0
⟶
e4431..
x0
=
x0
Theorem
bc369..
:
∀ x0 .
ordinal
x0
⟶
23e07..
x0
=
56ded..
x0
(proof)
Param
4a7ef..
:
ι
Known
3f849..
:
∀ x0 .
Subq
x0
4a7ef..
⟶
x0
=
4a7ef..
Known
e76d1..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
x2
)
⟶
x2
Known
c7cc7..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
Theorem
44ec0..
:
∀ x0 .
ordinal
x0
⟶
5246e..
x0
=
4a7ef..
(proof)
Known
23b01..
:
∀ x0 .
80242..
x0
⟶
02b90..
(
23e07..
x0
)
(
5246e..
x0
)
Theorem
58b67..
:
∀ x0 .
ordinal
x0
⟶
02b90..
(
56ded..
x0
)
4a7ef..
(proof)
Known
f6a2d..
:
∀ x0 .
80242..
x0
⟶
x0
=
02a50..
(
23e07..
x0
)
(
5246e..
x0
)
Theorem
360d7..
:
∀ x0 .
ordinal
x0
⟶
x0
=
02a50..
(
56ded..
x0
)
4a7ef..
(proof)
Known
40f7a..
:
ordinal
4a7ef..
Theorem
ebb60..
:
80242..
4a7ef..
(proof)
Theorem
ab02c..
:
e4431..
4a7ef..
=
4a7ef..
(proof)
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
3e9e2..
:
23e07..
4a7ef..
=
4a7ef..
(proof)
Theorem
bf919..
:
5246e..
4a7ef..
=
4a7ef..
(proof)
Known
817af..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
fe4bb..
x0
x1
⟶
or
(
099f3..
x0
x1
)
(
x0
=
x1
)
Param
d3786..
:
ι
→
ι
→
ι
Known
36ff9..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
80242..
x3
⟶
prim1
(
e4431..
x3
)
(
d3786..
(
e4431..
x0
)
(
e4431..
x1
)
)
⟶
SNoEq_
(
e4431..
x3
)
x3
x0
⟶
SNoEq_
(
e4431..
x3
)
x3
x1
⟶
099f3..
x0
x3
⟶
099f3..
x3
x1
⟶
nIn
(
e4431..
x3
)
x0
⟶
prim1
(
e4431..
x3
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
prim1
(
e4431..
x0
)
x1
⟶
x2
)
⟶
(
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
SNoEq_
(
e4431..
x1
)
x0
x1
⟶
nIn
(
e4431..
x1
)
x0
⟶
x2
)
⟶
x2
Known
ade9f..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
prim1
x2
x0
⟶
1beb9..
x2
x1
⟶
prim1
x1
(
56ded..
x0
)
Known
b0eab..
:
∀ x0 .
80242..
x0
⟶
1beb9..
(
e4431..
x0
)
x0
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Known
09af0..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
4ae4a..
x0
)
⟶
fe4bb..
x1
x0
Known
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
Known
4c9ee..
:
∀ x0 .
80242..
x0
⟶
ordinal
(
e4431..
x0
)
Theorem
99fb6..
:
∀ x0 .
80242..
x0
⟶
(
∀ x1 .
prim1
x1
(
56ded..
(
e4431..
x0
)
)
⟶
099f3..
x1
x0
)
⟶
e4431..
x0
=
x0
(proof)
Theorem
32c48..
:
∀ x0 .
80242..
x0
⟶
(
∀ x1 .
prim1
x1
(
56ded..
(
e4431..
x0
)
)
⟶
099f3..
x1
x0
)
⟶
ordinal
x0
(proof)
Param
7cb9a..
:
ι
→
ι
Known
20dcf..
:
∀ x0 x1 .
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
SNoEq_
(
e4431..
x1
)
x0
x1
⟶
nIn
(
e4431..
x1
)
x0
⟶
099f3..
x0
x1
Known
8e40c..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
7cb9a..
x0
)
=
4ae4a..
(
e4431..
x0
)
Known
f3f53..
:
∀ x0 .
80242..
x0
⟶
SNoEq_
(
e4431..
x0
)
(
7cb9a..
x0
)
x0
Known
e3722..
:
∀ x0 .
80242..
x0
⟶
nIn
(
e4431..
x0
)
(
7cb9a..
x0
)
Theorem
095d9..
:
∀ x0 .
80242..
x0
⟶
099f3..
(
7cb9a..
x0
)
x0
(proof)
Param
45abd..
:
ι
→
ι
Known
151ed..
:
∀ x0 x1 .
prim1
(
e4431..
x0
)
(
e4431..
x1
)
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
prim1
(
e4431..
x0
)
x1
⟶
099f3..
x0
x1
Known
80851..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
45abd..
x0
)
=
4ae4a..
(
e4431..
x0
)
Known
SNoEq_sym_
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x1
Known
aa41a..
:
∀ x0 .
80242..
x0
⟶
SNoEq_
(
e4431..
x0
)
(
45abd..
x0
)
x0
Known
35186..
:
∀ x0 .
80242..
x0
⟶
prim1
(
e4431..
x0
)
(
45abd..
x0
)
Theorem
cb40e..
:
∀ x0 .
80242..
x0
⟶
099f3..
x0
(
45abd..
x0
)
(proof)
Param
In_rec_ii
:
(
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
) →
ι
→
ι
→
ι
Param
If_ii
:
ο
→
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
True
:
ο
Definition
b3303..
:=
λ x0 :
ι →
(
ι → ι
)
→ ι
.
λ x1 .
In_rec_ii
(
λ x2 .
λ x3 :
ι →
ι → ι
.
If_ii
(
ordinal
x2
)
(
λ x4 .
If_i
(
prim1
x4
(
56ded..
(
4ae4a..
x2
)
)
)
(
x0
x4
(
λ x5 .
x3
(
e4431..
x5
)
x5
)
)
(
prim0
(
λ x5 .
True
)
)
)
(
λ x4 .
prim0
(
λ x5 .
True
)
)
)
(
e4431..
x1
)
x1
Known
In_rec_ii_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_ii
x0
x1
=
x0
x1
(
In_rec_ii
x0
)
Known
If_ii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
x0
⟶
If_ii
x0
x1
x2
=
x1
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
98928..
:
∀ x0 .
80242..
x0
⟶
prim1
x0
(
56ded..
(
4ae4a..
(
e4431..
x0
)
)
)
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
If_ii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
not
x0
⟶
If_ii
x0
x1
x2
=
x2
Theorem
451cb..
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
80242..
x1
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
80242..
x1
⟶
b3303..
x0
x1
=
x0
x1
(
b3303..
x0
)
(proof)
Param
In_rec_iii
:
(
ι
→
(
ι
→
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
→
ι
Param
If_iii
:
ο
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
Descr_ii
:
(
(
ι
→
ι
) →
ο
) →
ι
→
ι
Definition
fb712..
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
In_rec_iii
(
λ x2 .
λ x3 :
ι →
ι →
ι → ι
.
If_iii
(
ordinal
x2
)
(
λ x4 .
If_ii
(
prim1
x4
(
56ded..
(
4ae4a..
x2
)
)
)
(
x0
x4
(
λ x5 .
x3
(
e4431..
x5
)
x5
)
)
(
Descr_ii
(
λ x5 :
ι → ι
.
True
)
)
)
(
λ x4 .
Descr_ii
(
λ x5 :
ι → ι
.
True
)
)
)
(
e4431..
x1
)
x1
Known
In_rec_iii_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_iii
x0
x1
=
x0
x1
(
In_rec_iii
x0
)
Known
If_iii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
x0
⟶
If_iii
x0
x1
x2
=
x1
Known
If_iii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
not
x0
⟶
If_iii
x0
x1
x2
=
x2
Theorem
c9f3d..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
80242..
x1
⟶
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
80242..
x1
⟶
fb712..
x0
x1
=
x0
x1
(
fb712..
x0
)
(proof)
Known
1eaea..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
(
e4431..
x0
)
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Theorem
43617..
:
∀ x0 :
ι →
ι →
(
ι →
ι → ι
)
→ ι
.
(
∀ x1 .
80242..
x1
⟶
∀ x2 .
80242..
x2
⟶
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x6 .
80242..
x6
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
x3
x1
x5
=
x4
x1
x5
)
⟶
x0
x1
x2
x3
=
x0
x1
x2
x4
)
⟶
∀ x1 .
80242..
x1
⟶
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
x2
x4
=
x3
x4
)
⟶
∀ x4 .
80242..
x4
⟶
∀ x5 x6 :
ι → ι
.
(
∀ x7 .
prim1
x7
(
56ded..
(
e4431..
x4
)
)
⟶
x5
x7
=
x6
x7
)
⟶
x0
x1
x4
(
λ x8 x9 .
If_i
(
x8
=
x1
)
(
x5
x9
)
(
x2
x8
x9
)
)
=
x0
x1
x4
(
λ x8 x9 .
If_i
(
x8
=
x1
)
(
x6
x9
)
(
x3
x8
x9
)
)
(proof)
Theorem
26c4a..
:
∀ x0 :
ι →
ι →
(
ι →
ι → ι
)
→ ι
.
(
∀ x1 .
80242..
x1
⟶
∀ x2 .
80242..
x2
⟶
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x6 .
80242..
x6
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
x3
x1
x5
=
x4
x1
x5
)
⟶
x0
x1
x2
x3
=
x0
x1
x2
x4
)
⟶
∀ x1 .
80242..
x1
⟶
∀ x2 :
ι →
ι → ι
.
∀ x3 .
80242..
x3
⟶
b3303..
(
λ x5 .
λ x6 :
ι → ι
.
x0
x1
x5
(
λ x7 x8 .
If_i
(
x7
=
x1
)
(
x6
x8
)
(
x2
x7
x8
)
)
)
x3
=
x0
x1
x3
(
λ x5 x6 .
If_i
(
x5
=
x1
)
(
b3303..
(
λ x7 .
λ x8 :
ι → ι
.
x0
x1
x7
(
λ x9 x10 .
If_i
(
x9
=
x1
)
(
x8
x10
)
(
x2
x9
x10
)
)
)
x6
)
(
x2
x5
x6
)
)
(proof)
Definition
ad3ed..
:=
λ x0 :
ι →
ι →
(
ι →
ι → ι
)
→ ι
.
fb712..
(
λ x1 .
λ x2 :
ι →
ι → ι
.
λ x3 .
If_i
(
80242..
x3
)
(
b3303..
(
λ x4 .
λ x5 :
ι → ι
.
x0
x1
x4
(
λ x6 x7 .
If_i
(
x6
=
x1
)
(
x5
x7
)
(
x2
x6
x7
)
)
)
x3
)
4a7ef..
)
Known
ordinal_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ordinal
x1
⟶
x0
x1
Theorem
922f2..
:
∀ x0 :
ι →
ι →
(
ι →
ι → ι
)
→ ι
.
(
∀ x1 .
80242..
x1
⟶
∀ x2 .
80242..
x2
⟶
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x6 .
80242..
x6
⟶
x3
x5
x6
=
x4
x5
x6
)
⟶
(
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
x3
x1
x5
=
x4
x1
x5
)
⟶
x0
x1
x2
x3
=
x0
x1
x2
x4
)
⟶
∀ x1 .
80242..
x1
⟶
∀ x2 .
80242..
x2
⟶
ad3ed..
x0
x1
x2
=
x0
x1
x2
(
ad3ed..
x0
)
(proof)
Theorem
73943..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
∀ x2 .
prim1
x2
(
56ded..
x1
)
⟶
x0
x2
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
(proof)
Theorem
262b2..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
∀ x2 .
ordinal
x2
⟶
∀ x3 .
prim1
x3
(
56ded..
x1
)
⟶
∀ x4 .
prim1
x4
(
56ded..
x2
)
⟶
x0
x3
x4
)
⟶
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
x0
x1
x2
(proof)
Theorem
b59b7..
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 .
ordinal
x1
⟶
∀ x2 .
ordinal
x2
⟶
∀ x3 .
ordinal
x3
⟶
∀ x4 .
prim1
x4
(
56ded..
x1
)
⟶
∀ x5 .
prim1
x5
(
56ded..
x2
)
⟶
∀ x6 .
prim1
x6
(
56ded..
x3
)
⟶
x0
x4
x5
x6
)
⟶
∀ x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
x0
x1
x2
x3
(proof)
Theorem
5ccff..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
80242..
x1
⟶
(
∀ x2 .
prim1
x2
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
(proof)
Theorem
9ec10..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x3
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x3
x4
)
⟶
x0
x1
x2
)
⟶
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
x0
x1
x2
(proof)
Theorem
fbd1c..
:
∀ x0 :
ι →
ι →
ι → ο
.
(
∀ x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x4
x2
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x4
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x1
x2
x4
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x4
x5
x3
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x4
x2
x5
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x1
x4
x5
)
⟶
(
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x5 .
prim1
x5
(
56ded..
(
e4431..
x2
)
)
⟶
∀ x6 .
prim1
x6
(
56ded..
(
e4431..
x3
)
)
⟶
x0
x4
x5
x6
)
⟶
x0
x1
x2
x3
)
⟶
∀ x1 x2 x3 .
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
x0
x1
x2
x3
(proof)
Param
ba9d8..
:
ι
→
ο
Known
f3fb5..
:
∀ x0 .
ba9d8..
x0
⟶
ordinal
x0
Known
3db81..
:
ba9d8..
(
4ae4a..
4a7ef..
)
Theorem
c8ed0..
:
80242..
(
4ae4a..
4a7ef..
)
(proof)
Known
d7fe6..
:
ba9d8..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
8207c..
:
80242..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Param
48ef8..
:
ι
Known
c8a5e..
:
ordinal
48ef8..
Theorem
56954..
:
80242..
48ef8..
(proof)
Known
9c410..
:
ordinal
(
4ae4a..
4a7ef..
)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Theorem
de156..
:
099f3..
4a7ef..
(
4ae4a..
4a7ef..
)
(proof)
Known
5d775..
:
ordinal
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
3ace7..
:
099f3..
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Known
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Theorem
7c70f..
:
099f3..
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Definition
f4dc0..
:=
b3303..
(
λ x0 .
λ x1 :
ι → ι
.
02a50..
(
94f9e..
(
5246e..
x0
)
x1
)
(
94f9e..
(
23e07..
x0
)
x1
)
)
Known
aff96..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
94f9e..
x0
x1
=
94f9e..
x0
x2
Known
63df9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
Known
54843..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
Theorem
8810f..
:
∀ x0 .
80242..
x0
⟶
f4dc0..
x0
=
02a50..
(
94f9e..
(
5246e..
x0
)
f4dc0..
)
(
94f9e..
(
23e07..
x0
)
f4dc0..
)
(proof)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
9c8cc..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
Known
0888b..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
Known
5a5d4..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
80242..
(
02a50..
x0
x1
)
Known
d8827..
:
∀ x0 .
80242..
x0
⟶
and
(
ordinal
(
e4431..
x0
)
)
(
1beb9..
(
e4431..
x0
)
x0
)
Known
3eff2..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Theorem
2ffcf..
:
∀ x0 .
80242..
x0
⟶
and
(
and
(
and
(
80242..
(
f4dc0..
x0
)
)
(
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
099f3..
(
f4dc0..
x0
)
(
f4dc0..
x1
)
)
)
(
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
099f3..
(
f4dc0..
x1
)
(
f4dc0..
x0
)
)
)
(
02b90..
(
94f9e..
(
5246e..
x0
)
f4dc0..
)
(
94f9e..
(
23e07..
x0
)
f4dc0..
)
)
(proof)
Theorem
706f7..
:
∀ x0 .
80242..
x0
⟶
80242..
(
f4dc0..
x0
)
(proof)
Theorem
4d4af..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
099f3..
(
f4dc0..
x1
)
(
f4dc0..
x0
)
(proof)
Known
8dc73..
:
∀ x0 x1 .
099f3..
x0
x1
⟶
fe4bb..
x0
x1
Known
4c8cc..
:
∀ x0 .
fe4bb..
x0
x0
Theorem
f735c..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
fe4bb..
x0
x1
⟶
fe4bb..
(
f4dc0..
x1
)
(
f4dc0..
x0
)
(proof)
Theorem
106e3..
:
∀ x0 .
80242..
x0
⟶
02b90..
(
94f9e..
(
5246e..
x0
)
f4dc0..
)
(
94f9e..
(
23e07..
x0
)
f4dc0..
)
(proof)
Theorem
a9e6a..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
02b90..
(
94f9e..
x1
f4dc0..
)
(
94f9e..
x0
f4dc0..
)
(proof)
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
042d7..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
a842e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
prim1
x2
(
x1
x4
)
)
⟶
x3
)
⟶
x3
Known
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Known
4f62a..
:
∀ x0 x1 .
ordinal
x0
⟶
prim1
x1
x0
⟶
or
(
prim1
(
4ae4a..
x1
)
x0
)
(
x0
=
4ae4a..
x1
)
Known
45024..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
0ac37..
x0
x1
)
Known
d5fb2..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
a842e..
x0
x1
)
Theorem
fa2f6..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
Subq
(
e4431..
(
f4dc0..
x1
)
)
(
e4431..
x1
)
(proof)
Theorem
e1909..
:
∀ x0 .
80242..
x0
⟶
Subq
(
e4431..
(
f4dc0..
x0
)
)
(
e4431..
x0
)
(proof)
Known
cfea1..
:
∀ x0 :
ι → ο
.
(
∀ x1 x2 .
02b90..
x1
x2
⟶
(
∀ x3 .
prim1
x3
x1
⟶
x0
x3
)
⟶
(
∀ x3 .
prim1
x3
x2
⟶
x0
x3
)
⟶
x0
(
02a50..
x1
x2
)
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
Known
2b8be..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
e4431..
x0
=
e4431..
x1
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
x0
=
x1
Known
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Known
c1313..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
80242..
x2
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x2
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x2
)
Theorem
8948a..
:
∀ x0 .
80242..
x0
⟶
f4dc0..
(
f4dc0..
x0
)
=
x0
(proof)
Theorem
15454..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
f4dc0..
x0
)
=
e4431..
x0
(proof)
Known
27bae..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
1beb9..
x0
x1
⟶
e4431..
x1
=
x0
Known
5258d..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
1beb9..
x0
x1
⟶
80242..
x1
Theorem
2f1de..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
1beb9..
x0
x1
⟶
1beb9..
x0
(
f4dc0..
x1
)
(proof)
Theorem
cd88b..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
prim1
(
f4dc0..
x1
)
(
56ded..
x0
)
(proof)
Theorem
f4a7a..
:
∀ x0 .
80242..
x0
⟶
∀ x1 x2 .
02b90..
x1
x2
⟶
x0
=
02a50..
x1
x2
⟶
f4dc0..
x0
=
02a50..
(
94f9e..
x2
f4dc0..
)
(
94f9e..
x1
f4dc0..
)
(proof)
Theorem
3cd4e..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
f4dc0..
(
02a50..
x0
x1
)
=
02a50..
(
94f9e..
x1
f4dc0..
)
(
94f9e..
x0
f4dc0..
)
(proof)
Theorem
d4781..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
(
f4dc0..
x0
)
x1
⟶
099f3..
(
f4dc0..
x1
)
x0
(proof)
Theorem
26c90..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
(
f4dc0..
x1
)
⟶
099f3..
x1
(
f4dc0..
x0
)
(proof)
Theorem
27827..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
(
f4dc0..
x0
)
(
f4dc0..
x1
)
⟶
099f3..
x1
x0
(proof)
Theorem
681ed..
:
80242..
(
f4dc0..
48ef8..
)
(proof)
Theorem
9ed0c..
:
∀ x0 .
ordinal
x0
⟶
80242..
(
f4dc0..
x0
)
(proof)
Theorem
542d9..
:
∀ x0 .
ordinal
x0
⟶
e4431..
(
f4dc0..
x0
)
=
x0
(proof)
Theorem
205d0..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
x0
⟶
099f3..
(
f4dc0..
x0
)
x1
(proof)
Theorem
c57b6..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
4ae4a..
x0
)
⟶
fe4bb..
(
f4dc0..
x0
)
x1
(proof)
Definition
bc82c..
:=
ad3ed..
(
λ x0 x1 .
λ x2 :
ι →
ι → ι
.
02a50..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x3 .
x2
x3
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
x2
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x3 .
x2
x3
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
x2
x0
)
)
)
)
Theorem
8a8cc..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
bc82c..
x0
x1
=
02a50..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
bc82c..
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
bc82c..
x0
)
)
)
(proof)
Param
ac767..
:
ι
→
ι
→
ι
Param
f482f..
:
ι
→
ι
→
ι
Definition
e6316..
:=
ad3ed..
(
λ x0 x1 .
λ x2 :
ι →
ι → ι
.
02a50..
(
0ac37..
(
94f9e..
(
ac767..
(
23e07..
x0
)
(
23e07..
x1
)
)
(
λ x3 .
bc82c..
(
x2
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
x2
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
x2
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
94f9e..
(
ac767..
(
5246e..
x0
)
(
5246e..
x1
)
)
(
λ x3 .
bc82c..
(
x2
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
x2
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
x2
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
0ac37..
(
94f9e..
(
ac767..
(
23e07..
x0
)
(
5246e..
x1
)
)
(
λ x3 .
bc82c..
(
x2
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
x2
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
x2
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
94f9e..
(
ac767..
(
5246e..
x0
)
(
23e07..
x1
)
)
(
λ x3 .
bc82c..
(
x2
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
x2
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
x2
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Known
9f585..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
94f9e..
(
ac767..
x0
x1
)
(
λ x5 .
x2
(
f482f..
x5
4a7ef..
)
(
f482f..
x5
(
4ae4a..
4a7ef..
)
)
)
=
94f9e..
(
ac767..
x0
x1
)
(
λ x5 .
x3
(
f482f..
x5
4a7ef..
)
(
f482f..
x5
(
4ae4a..
4a7ef..
)
)
)
Theorem
6381b..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
e6316..
x0
x1
=
02a50..
(
0ac37..
(
94f9e..
(
ac767..
(
23e07..
x0
)
(
23e07..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
94f9e..
(
ac767..
(
5246e..
x0
)
(
5246e..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
0ac37..
(
94f9e..
(
ac767..
(
23e07..
x0
)
(
5246e..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
94f9e..
(
ac767..
(
5246e..
x0
)
(
23e07..
x1
)
)
(
λ x3 .
bc82c..
(
e6316..
(
f482f..
x3
4a7ef..
)
x1
)
(
bc82c..
(
e6316..
x0
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
(
f4dc0..
(
e6316..
(
f482f..
x3
4a7ef..
)
(
f482f..
x3
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(proof)
Param
62ee1..
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
f74bd..
:=
prim0
(
λ x0 .
and
(
∀ x1 .
prim1
x1
x0
⟶
80242..
x1
)
(
62ee1..
x0
4a7ef..
(
4ae4a..
4a7ef..
)
bc82c..
e6316..
fe4bb..
)
)