Search for blocks/addresses/...
Proofgold Asset
asset id
395eea156ebdda5545f95e8629bb8cf030834f64684f1aad9e8a79acf7f957e1
asset hash
edd778aa732bda3e7b0c96abc8bd0a9156ac8439b8bb8d0d04f5f792bfb13d12
bday / block
36852
tx
4cef6..
preasset
doc published by
Pr4zB..
Param
4402e..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Param
cf2df..
:
ι
→
(
ι
→
ι
→
ο
) →
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
8b6ad..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 .
∀ x5 : ο .
(
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x0
x1
x2
)
⟶
not
(
x0
x1
x3
)
⟶
not
(
x0
x2
x3
)
⟶
not
(
x0
x1
x4
)
⟶
not
(
x0
x2
x4
)
⟶
not
(
x0
x3
x4
)
⟶
x5
)
⟶
x5
Definition
c5756..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 .
∀ x6 : ο .
(
8b6ad..
x0
x1
x2
x3
x4
⟶
(
x1
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x2
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x3
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
(
x4
=
x5
⟶
∀ x7 : ο .
x7
)
⟶
not
(
x0
x1
x5
)
⟶
not
(
x0
x2
x5
)
⟶
x0
x3
x5
⟶
x0
x4
x5
⟶
x6
)
⟶
x6
Definition
2de86..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
36d58..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
2de86..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
af16d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
36d58..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
7e5de..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
af16d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
51ac7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
7e5de..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
f8709..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x0
x1
x6
)
⟶
x0
x2
x6
⟶
x0
x3
x6
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
e8ae3..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
not
(
x0
x2
x7
)
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
fa72d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
e8ae3..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
d92ce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
fa72d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
x0
x2
x9
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
f9d60..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
d92ce..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
x0
x3
x10
⟶
not
(
x0
x4
x10
)
⟶
not
(
x0
x5
x10
)
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
38607..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
f9d60..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
x0
x1
x11
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x4
x11
)
⟶
x0
x5
x11
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
not
(
x0
x8
x11
)
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
27260..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
not
(
x0
x4
x7
)
⟶
x0
x5
x7
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
dfcf9..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
27260..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
not
(
x0
x4
x8
)
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
76a6c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
dfcf9..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
x0
x4
x9
⟶
not
(
x0
x5
x9
)
⟶
not
(
x0
x6
x9
)
⟶
x0
x7
x9
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
d4ea7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
76a6c..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
not
(
x0
x2
x10
)
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
x0
x6
x10
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
6a2c7..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
d4ea7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
x0
x1
x11
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x3
x11
)
⟶
x0
x4
x11
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
not
(
x0
x8
x11
)
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
16c0f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
not
(
x0
x3
x7
)
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
00e1f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
16c0f..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
ed012..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
00e1f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
d8b5d..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
ed012..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
c7c61..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
d8b5d..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
not
(
x0
x1
x11
)
⟶
not
(
x0
x2
x11
)
⟶
x0
x3
x11
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
x0
x8
x11
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
185eb..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
f8709..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
fd83c..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
185eb..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
not
(
x0
x2
x8
)
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
b4c31..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
fd83c..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
x0
x1
x9
⟶
not
(
x0
x2
x9
)
⟶
not
(
x0
x3
x9
)
⟶
not
(
x0
x4
x9
)
⟶
x0
x5
x9
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
1465e..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
b4c31..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
x0
x8
x10
⟶
not
(
x0
x9
x10
)
⟶
x11
)
⟶
x11
Definition
ea5d0..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
1465e..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
not
(
x0
x1
x11
)
⟶
not
(
x0
x2
x11
)
⟶
x0
x3
x11
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
x0
x8
x11
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
8fef1..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
51ac7..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
not
(
x0
x1
x11
)
⟶
x0
x2
x11
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
x0
x8
x11
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
ba720..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 .
∀ x7 : ο .
(
c5756..
x0
x1
x2
x3
x4
x5
⟶
(
x1
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x2
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x3
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x4
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
(
x5
=
x6
⟶
∀ x8 : ο .
x8
)
⟶
x0
x1
x6
⟶
x0
x2
x6
⟶
not
(
x0
x3
x6
)
⟶
x0
x4
x6
⟶
not
(
x0
x5
x6
)
⟶
x7
)
⟶
x7
Definition
28532..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 .
∀ x8 : ο .
(
ba720..
x0
x1
x2
x3
x4
x5
x6
⟶
(
x1
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x2
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x3
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x4
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x5
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
(
x6
=
x7
⟶
∀ x9 : ο .
x9
)
⟶
x0
x1
x7
⟶
x0
x2
x7
⟶
x0
x3
x7
⟶
x0
x4
x7
⟶
not
(
x0
x5
x7
)
⟶
not
(
x0
x6
x7
)
⟶
x8
)
⟶
x8
Definition
5072f..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 .
∀ x9 : ο .
(
28532..
x0
x1
x2
x3
x4
x5
x6
x7
⟶
(
x1
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x2
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x3
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x4
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x5
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x6
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
(
x7
=
x8
⟶
∀ x10 : ο .
x10
)
⟶
not
(
x0
x1
x8
)
⟶
x0
x2
x8
⟶
not
(
x0
x3
x8
)
⟶
x0
x4
x8
⟶
not
(
x0
x5
x8
)
⟶
not
(
x0
x6
x8
)
⟶
not
(
x0
x7
x8
)
⟶
x9
)
⟶
x9
Definition
b19dd..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 .
∀ x10 : ο .
(
5072f..
x0
x1
x2
x3
x4
x5
x6
x7
x8
⟶
(
x1
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x2
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x3
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x4
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x5
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x6
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x7
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x9
⟶
∀ x11 : ο .
x11
)
⟶
not
(
x0
x1
x9
)
⟶
not
(
x0
x2
x9
)
⟶
x0
x3
x9
⟶
not
(
x0
x4
x9
)
⟶
not
(
x0
x5
x9
)
⟶
x0
x6
x9
⟶
not
(
x0
x7
x9
)
⟶
x0
x8
x9
⟶
x10
)
⟶
x10
Definition
e5b49..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
∀ x11 : ο .
(
b19dd..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
(
x1
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x2
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x3
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x4
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x5
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x6
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x7
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
(
x9
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
x0
x1
x10
⟶
x0
x2
x10
⟶
not
(
x0
x3
x10
)
⟶
not
(
x0
x4
x10
)
⟶
x0
x5
x10
⟶
not
(
x0
x6
x10
)
⟶
not
(
x0
x7
x10
)
⟶
not
(
x0
x8
x10
)
⟶
x0
x9
x10
⟶
x11
)
⟶
x11
Definition
54502..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 : ο .
(
e5b49..
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
(
x1
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x2
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x3
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x4
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x5
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x6
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x7
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x8
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x9
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
(
x10
=
x11
⟶
∀ x13 : ο .
x13
)
⟶
x0
x1
x11
⟶
not
(
x0
x2
x11
)
⟶
not
(
x0
x3
x11
)
⟶
not
(
x0
x4
x11
)
⟶
not
(
x0
x5
x11
)
⟶
not
(
x0
x6
x11
)
⟶
not
(
x0
x7
x11
)
⟶
x0
x8
x11
⟶
not
(
x0
x9
x11
)
⟶
not
(
x0
x10
x11
)
⟶
x12
)
⟶
x12
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
7d423..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
51ac7..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
not
(
x2
x11
x3
)
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
x2
x6
x3
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
x2
x4
x3
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
not
(
x2
x10
x3
)
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
not
(
x2
x8
x3
)
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
(
not
(
x2
x4
x3
)
⟶
x2
x5
x3
⟶
not
(
x2
x6
x3
)
⟶
not
(
x2
x7
x3
)
⟶
x2
x8
x3
⟶
not
(
x2
x9
x3
)
⟶
x2
x10
x3
⟶
x2
x11
x3
⟶
not
(
x2
x12
x3
)
⟶
not
(
x2
x13
x3
)
⟶
x14
)
⟶
x14
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
d2a22..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
51ac7..
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
⟶
51ac7..
x1
x6
x3
x8
x11
x2
x7
x4
x9
x10
x5
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
35a24..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
⟶
4402e..
x1
x2
⟶
cf2df..
x1
x2
⟶
∀ x3 .
x3
∈
x1
⟶
x0
⊆
setminus
x1
(
Sing
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
∀ x12 .
x12
∈
x0
⟶
∀ x13 .
x13
∈
x0
⟶
51ac7..
x2
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
38607..
x2
x3
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
⟶
x14
)
⟶
(
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
6a2c7..
x2
x3
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
⟶
x14
)
⟶
(
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
c7c61..
x2
x15
x16
x3
x17
x18
x19
x20
x21
x22
x23
x24
⟶
x14
)
⟶
(
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
ea5d0..
x2
x15
x16
x3
x17
x18
x19
x20
x21
x22
x23
x24
⟶
x14
)
⟶
(
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
8fef1..
x2
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x3
⟶
x14
)
⟶
(
∀ x15 .
x15
∈
x0
⟶
∀ x16 .
x16
∈
x0
⟶
∀ x17 .
x17
∈
x0
⟶
∀ x18 .
x18
∈
x0
⟶
∀ x19 .
x19
∈
x0
⟶
∀ x20 .
x20
∈
x0
⟶
∀ x21 .
x21
∈
x0
⟶
∀ x22 .
x22
∈
x0
⟶
∀ x23 .
x23
∈
x0
⟶
∀ x24 .
x24
∈
x0
⟶
54502..
x2
x15
x16
x17
x18
x19
x20
x21
x3
x22
x23
x24
⟶
x14
)
⟶
x14
(proof)