Search for blocks/addresses/...
Proofgold Asset
asset id
3a724d67b175f08642558bc552ca7ceac3fed5c16d854731b5648773428fb820
asset hash
3e775a0c839a1cb712bf97deb53afc1a4285ce97bcda7f7ee623a087552e032b
bday / block
29749
tx
c60a4..
preasset
doc published by
PrQUS..
Param
omega
omega
:
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Param
nat_p
nat_p
:
ι
→
ο
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
add_SNo_omega_SR
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
(
ordsucc
x1
)
=
ordsucc
(
add_SNo
x0
x1
)
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Definition
infinite
infinite
:=
λ x0 .
not
(
finite
x0
)
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Theorem
atleastp_omega_infinite
atleastp_omega_infinite
:
∀ x0 .
atleastp
omega
x0
⟶
infinite
x0
(proof)
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Known
eb0c4..
binunion_remove1_eq
:
∀ x0 x1 .
x1
∈
x0
⟶
x0
=
binunion
(
setminus
x0
(
Sing
x1
)
)
(
Sing
x1
)
Known
binunion_finite
binunion_finite
:
∀ x0 .
finite
x0
⟶
∀ x1 .
finite
x1
⟶
finite
(
binunion
x0
x1
)
Known
28148..
Sing_finite
:
∀ x0 .
finite
(
Sing
x0
)
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Theorem
infinite_remove1
infinite_remove1
:
∀ x0 .
infinite
x0
⟶
∀ x1 .
infinite
(
setminus
x0
(
Sing
x1
)
)
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
infinite_Finite_Subq_ex
infinite_Finite_Subq_ex
:
∀ x0 .
infinite
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
⊆
x0
)
(
equip
x3
x1
)
⟶
x2
)
⟶
x2
(proof)