Search for blocks/addresses/...

Proofgold Asset

asset id
79bb517cc34958f92a62e38c912468048a7d8b3527ce6de0655fb22a958eb53f
asset hash
3b9349ef165a881e84c9b3f5b68739d2d17fd448e871a19863759517736b5a04
bday / block
1604
tx
82de5..
preasset
doc published by PrGxv..
Known 0610a..neq_ordsucc_0 : ∀ x0 . not (ordsucc x0 = 0)
Theorem 97f79..neq_3_0 : not (3 = 0) (proof)
Known aaf17..ordsucc_inj_contra : ∀ x0 x1 . not (x0 = x1)not (ordsucc x0 = ordsucc x1)
Known db5d7..neq_2_0 : not (2 = 0)
Theorem 28881..neq_3_1 : not (3 = 1) (proof)
Known 56778..neq_2_1 : not (2 = 1)
Theorem f1fc4..neq_3_2 : not (3 = 2) (proof)
Theorem fc9ff..neq_4_0 : not (4 = 0) (proof)
Theorem 34131..neq_4_1 : not (4 = 1) (proof)
Theorem 547fc..neq_4_2 : not (4 = 2) (proof)
Theorem bfbcc..neq_4_3 : not (4 = 3) (proof)
Theorem 3d58e..neq_5_0 : not (5 = 0) (proof)
Theorem 03b32..neq_5_1 : not (5 = 1) (proof)
Theorem b24f1..neq_5_2 : not (5 = 2) (proof)
Theorem ab3a6..neq_5_3 : not (5 = 3) (proof)
Theorem 8140f..neq_5_4 : not (5 = 4) (proof)
Theorem 4193c..neq_6_0 : not (6 = 0) (proof)
Theorem 53f92..neq_6_1 : not (6 = 1) (proof)
Theorem f4b9c..neq_6_2 : not (6 = 2) (proof)
Theorem 96787..neq_6_3 : not (6 = 3) (proof)
Theorem 2a680..neq_6_4 : not (6 = 4) (proof)
Theorem 3a5c9..neq_6_5 : not (6 = 5) (proof)
Theorem ca789..neq_7_0 : not (7 = 0) (proof)
Theorem 6a87a..neq_7_1 : not (7 = 1) (proof)
Theorem 46692..neq_7_2 : not (7 = 2) (proof)
Theorem c0553..neq_7_3 : not (7 = 3) (proof)
Theorem 21c2e..neq_7_4 : not (7 = 4) (proof)
Theorem fdff8..neq_7_5 : not (7 = 5) (proof)
Theorem 0a1a6..neq_7_6 : not (7 = 6) (proof)
Theorem c1d23..neq_8_0 : not (8 = 0) (proof)
Theorem 3fd1f..neq_8_1 : not (8 = 1) (proof)
Theorem 0aafe..neq_8_2 : not (8 = 2) (proof)
Theorem 4862b..neq_8_3 : not (8 = 3) (proof)
Theorem e99bd..neq_8_4 : not (8 = 4) (proof)
Theorem c7589..neq_8_5 : not (8 = 5) (proof)
Theorem 85418..neq_8_6 : not (8 = 6) (proof)
Theorem 0ff51..neq_8_7 : not (8 = 7) (proof)
Theorem 71f93..neq_9_0 : not (9 = 0) (proof)
Theorem d7575..neq_9_1 : not (9 = 1) (proof)
Theorem 5076a..neq_9_2 : not (9 = 2) (proof)
Theorem b56e1..neq_9_3 : not (9 = 3) (proof)
Theorem 178d5..neq_9_4 : not (9 = 4) (proof)
Theorem ff515..neq_9_5 : not (9 = 5) (proof)
Theorem 59e77..neq_9_6 : not (9 = 6) (proof)
Theorem ed67b..neq_9_7 : not (9 = 7) (proof)
Theorem bb081..neq_9_8 : not (9 = 8) (proof)
Known 5f38d..TransSet_def : TransSet = λ x1 . ∀ x2 . In x2 x1Subq x2 x1
Known c1173..Subq_def : Subq = λ x1 x2 . ∀ x3 . In x3 x1In x3 x2
Theorem 300ec..TransSetIb : ∀ x0 . (∀ x1 . In x1 x0∀ x2 . In x2 x1In x2 x0)TransSet x0 (proof)
Theorem 6e976..TransSetEb : ∀ x0 . TransSet x0∀ x1 . In x1 x0∀ x2 . In x2 x1In x2 x0 (proof)
Known f40a4..ordinal_def : ordinal = λ x1 . and (TransSet x1) (∀ x2 . In x2 x1TransSet x2)
Known 39854..andEL : ∀ x0 x1 : ο . and x0 x1x0
Theorem 339db..ordinal_TransSet : ∀ x0 . ordinal x0TransSet x0 (proof)
Theorem 1cf88..ordinal_TransSet_b : ∀ x0 . ordinal x0∀ x1 . In x1 x0∀ x2 . In x2 x1In x2 x0 (proof)
Known eb789..andER : ∀ x0 x1 : ο . and x0 x1x1
Theorem be3f3..ordinal_In_TransSet : ∀ x0 . ordinal x0∀ x1 . In x1 x0TransSet x1 (proof)
Theorem f2b18..ordinal_In_TransSet_b : ∀ x0 . ordinal x0∀ x1 . In x1 x0∀ x2 . In x2 x1∀ x3 . In x3 x2In x3 x1 (proof)
Known 7c02f..andI : ∀ x0 x1 : ο . x0x1and x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Known 2901c..EmptyE : ∀ x0 . In x0 0False
Theorem f9053..ordinal_Empty : ordinal 0 (proof)
Known andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2
Known 367e6..SubqE : ∀ x0 x1 . Subq x0 x1∀ x2 . In x2 x0In x2 x1
Theorem 14977..ordinal_Hered : ∀ x0 . ordinal x0∀ x1 . In x1 x0ordinal x1 (proof)
Known 61ad0..In_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . In x2 x1x0 x2)x0 x1)∀ x1 . x0 x1
Theorem 68454..ordinal_ind : ∀ x0 : ι → ο . (∀ x1 . ordinal x1(∀ x2 . In x2 x1x0 x2)x0 x1)∀ x1 . ordinal x1x0 x1 (proof)
Known b4782..contra : ∀ x0 : ο . (not x0False)x0
Known notEnotE : ∀ x0 : ο . not x0x0False
Known 8106d..notI : ∀ x0 : ο . (x0False)not x0
Known f6404..and3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 48a85..least_ordinal_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . and (ordinal x2) (x0 x2)x1)x1)∀ x1 : ο . (∀ x2 . and (and (ordinal x2) (x0 x2)) (∀ x3 . In x3 x2not (x0 x3))x1)x1 (proof)
Known b0dce..SubqI : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)Subq x0 x1
Known b4776..ordsuccE_impred : ∀ x0 x1 . In x1 (ordsucc x0)∀ x2 : ο . (In x1 x0x2)(x1 = x0x2)x2
Known e9b50..ordsuccI1b : ∀ x0 x1 . In x1 x0In x1 (ordsucc x0)
Theorem 97a90..TransSet_ordsucc : ∀ x0 . TransSet x0TransSet (ordsucc x0) (proof)
Theorem 8f4aa..ordinal_ordsucc : ∀ x0 . ordinal x0ordinal (ordsucc x0) (proof)
Known fed08..nat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known 08dfe..nat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known c7c31..nat_1 : nat_p 1
Theorem c2b57..ordinal_1 : ordinal 1 (proof)
Known 36841..nat_2 : nat_p 2
Theorem a2c28..ordinal_2 : ordinal 2 (proof)
Theorem 27c30..TransSet_ordsucc_In_Subq : ∀ x0 . TransSet x0∀ x1 . In x1 x0Subq (ordsucc x1) x0 (proof)
Theorem 26a5d..ordinal_ordsucc_In_Subq : ∀ x0 . ordinal x0∀ x1 . In x1 x0Subq (ordsucc x1) x0 (proof)
Known 3ab01..xmcases_In : ∀ x0 x1 . ∀ x2 : ο . (In x0 x1x2)(nIn x0 x1x2)x2
Known cb243..or3I1 : ∀ x0 x1 x2 : ο . x0or (or x0 x1) x2
Known a4277..or3I3 : ∀ x0 x1 x2 : ο . x2or (or x0 x1) x2
Known 8aff3..or3I2 : ∀ x0 x1 x2 : ο . x1or (or x0 x1) x2
Known 535f2..set_ext_2 : ∀ x0 x1 . (∀ x2 . In x2 x0In x2 x1)(∀ x2 . In x2 x1In x2 x0)x0 = x1
Known 8cb38..or3E : ∀ x0 x1 x2 : ο . or (or x0 x1) x2∀ x3 : ο . (x0x3)(x1x3)(x2x3)x3
Known 24526..nIn_E2 : ∀ x0 x1 . nIn x0 x1In x0 x1False
Theorem 3fa8b..ordinal_trichotomy_or : ∀ x0 x1 . ordinal x0ordinal x1or (or (In x0 x1) (x0 = x1)) (In x1 x0) (proof)
Theorem 42117..ordinal_trichotomy_or_impred : ∀ x0 x1 . ordinal x0ordinal x1∀ x2 : ο . (In x0 x1x2)(x0 = x1x2)(In x1 x0x2)x2 (proof)
Known 6fb1f..tab_neg_exactly1of2 : ∀ x0 x1 : ο . not (exactly1of2 x0 x1)(x0x1False)(not x0not x1False)False
Theorem c603f..exactly1of2_I1 : ∀ x0 x1 : ο . x0not x1exactly1of2 x0 x1 (proof)
Theorem e4955..exactly1of2_I2 : ∀ x0 x1 : ο . not x0x1exactly1of2 x0 x1 (proof)
Known 71e01..exactly1of3_def : exactly1of3 = λ x1 x2 x3 : ο . or (and (exactly1of2 x1 x2) (not x3)) (and (and (not x1) (not x2)) x3)
Known dcbd9..orIL : ∀ x0 x1 : ο . x0or x0 x1
Theorem d04cf..exactly1of3_I1 : ∀ x0 x1 x2 : ο . x0not x1not x2exactly1of3 x0 x1 x2 (proof)
Theorem 7eee1..exactly1of3_I2 : ∀ x0 x1 x2 : ο . not x0x1not x2exactly1of3 x0 x1 x2 (proof)
Known eca40..orIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem 351d2..exactly1of3_I3 : ∀ x0 x1 x2 : ο . not x0not x1x2exactly1of3 x0 x1 x2 (proof)
Known e85f6..In_irref : ∀ x0 . nIn x0 x0
Known 0f73a..In_no2cycle : ∀ x0 x1 . In x0 x1In x1 x0False
Known 382c5..nIn_def : nIn = λ x1 x2 . not (In x1 x2)
Theorem ed131..ordinal_trichotomy : ∀ x0 x1 . ordinal x0ordinal x1exactly1of3 (In x0 x1) (x0 = x1) (In x1 x0) (proof)
Known 6696a..Subq_ref : ∀ x0 . Subq x0 x0
Theorem 3e9a7..ordinal_In_Or_Subq : ∀ x0 x1 . ordinal x0ordinal x1or (In x0 x1) (Subq x1 x0) (proof)
Known 37124..orE : ∀ x0 x1 : ο . or x0 x1∀ x2 : ο . (x0x2)(x1x2)x2
Theorem a9fff..ordinal_linear : ∀ x0 x1 . ordinal x0ordinal x1or (Subq x0 x1) (Subq x1 x0) (proof)
Theorem b651e..ordinal_ordsucc_In_eq : ∀ x0 x1 . ordinal x0In x1 x0or (In (ordsucc x1) x0) (x0 = ordsucc x1) (proof)
Known 47706..xmcases : ∀ x0 x1 : ο . (x0x1)(not x0x1)x1
Theorem adbfc..ordinal_lim_or_succ : ∀ x0 . ordinal x0or (∀ x1 . In x1 x0In (ordsucc x1) x0) (∀ x1 : ο . (∀ x2 . and (In x2 x0) (x0 = ordsucc x2)x1)x1) (proof)
Known 165f2..ordsuccI1 : ∀ x0 . Subq x0 (ordsucc x0)
Known cf025..ordsuccI2 : ∀ x0 . In x0 (ordsucc x0)
Known b3824..set_ext : ∀ x0 x1 . Subq x0 x1Subq x1 x0x0 = x1
Theorem 6bb04..ordinal_ordsucc_In : ∀ x0 . ordinal x0∀ x1 . In x1 x0In (ordsucc x1) (ordsucc x0) (proof)
Known 79a81..TransSetI : ∀ x0 . (∀ x1 . In x1 x0Subq x1 x0)TransSet x0
Known 2109a..UnionE2 : ∀ x0 x1 . In x1 (Union x0)∀ x2 : ο . (∀ x3 . In x1 x3In x3 x0x2)x2
Known a4d26..UnionI : ∀ x0 x1 x2 . In x1 x2In x2 x0In x1 (Union x0)
Known 2fc4a..TransSetE : ∀ x0 . TransSet x0∀ x1 . In x1 x0Subq x1 x0
Theorem 19db8..ordinal_Union : ∀ x0 . (∀ x1 . In x1 x0ordinal x1)ordinal (Union x0) (proof)
Known 7b31d..famunionE2 : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . In x2 (famunion x0 x1)∀ x3 : ο . (∀ x4 . In x4 x0In x2 (x1 x4)x3)x3
Known 8f8c2..famunionI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . In x2 x0In x3 (x1 x2)In x3 (famunion x0 x1)
Theorem d7246..ordinal_famunion : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . In x2 x0ordinal (x1 x2))ordinal (famunion x0 x1) (proof)
Known 485cd..binintersect_Subq_eq_1 : ∀ x0 x1 . Subq x0 x1binintersect x0 x1 = x0
Known 6b560..binintersect_com : ∀ x0 x1 . binintersect x0 x1 = binintersect x1 x0
Theorem 4ebb9..ordinal_binintersect : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binintersect x0 x1) (proof)
Known 69c3f..Subq_binunion_eq : ∀ x0 x1 . Subq x0 x1 = (binunion x0 x1 = x1)
Known 78b78..binunion_com : ∀ x0 x1 . binunion x0 x1 = binunion x1 x0
Theorem 78603..ordinal_binunion : ∀ x0 x1 . ordinal x0ordinal x1ordinal (binunion x0 x1) (proof)
Known aa3f4..SepE_impred : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)∀ x3 : ο . (In x2 x0x1 x2x3)x3
Known dab1f..SepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 x0x1 x2In x2 (Sep x0 x1)
Known c4260..SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . In x2 (Sep x0 x1)In x2 x0
Theorem 62f91..ordinal_Sep : ∀ x0 . ordinal x0∀ x1 : ι → ο . (∀ x2 . In x2 x0∀ x3 . In x3 x2x1 x2x1 x3)ordinal (Sep x0 x1) (proof)