Search for blocks/addresses/...
Proofgold Asset
asset id
3c6aeb54e6af68675ed8cee4d5cf7da1135a1e192ff3521beb219aa110ff9d30
asset hash
edf020969961958e2b0d581e5114860e0cae6a95282e4312db6a0d9243a2c438
bday / block
35120
tx
6d246..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
e1852..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 x7 .
∀ x8 :
ι →
ι →
ι → ο
.
∀ x9 :
ι →
ι → ι
.
∀ x10 :
ι → ο
.
∀ x11 x12 :
ι → ι
.
∀ x13 :
ι → ο
.
∀ x14 x15 .
∀ x16 :
ι → ο
.
∀ x17 x18 .
∀ x19 :
ι → ο
.
∀ x20 x21 x22 x23 x24 .
∀ x25 x26 :
ι →
ι → ι
.
∀ x27 :
ι → ο
.
∀ x28 :
ι → ι
.
∀ x29 x30 x31 x32 :
ι →
ι →
ι → ι
.
∀ x33 x34 x35 x36 :
ι → ο
.
∀ x37 x38 x39 .
∀ x40 x41 :
ι → ο
.
∀ x42 :
ι →
ι → ι
.
∀ x43 :
ι → ο
.
∀ x44 .
∀ x45 :
ι → ο
.
∀ x46 x47 x48 x49 x50 x51 .
∀ x52 :
ι → ο
.
∀ x53 x54 :
ι → ι
.
∀ x55 x56 .
∀ x57 :
ι → ο
.
∀ x58 .
∀ x59 :
ι →
ι → ι
.
∀ x60 :
ι → ι
.
∀ x61 :
ι → ο
.
∀ x62 .
∀ x63 :
ι → ο
.
(
∀ x64 x65 .
x63
x65
⟶
(
x65
=
x64
⟶
False
)
⟶
x63
x64
⟶
False
)
⟶
(
∀ x64 x65 .
x0
x64
x65
⟶
x63
x65
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x64
=
x62
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x0
x64
x65
⟶
x2
x65
(
x1
x66
)
⟶
x63
x66
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x0
x65
x66
⟶
x2
x66
(
x1
x64
)
⟶
(
x2
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x3
x65
x64
⟶
(
x2
x65
(
x1
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
(
x1
x64
)
⟶
(
x3
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x64
x65
⟶
(
x63
x65
⟶
False
)
⟶
(
x0
x64
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x0
x65
x64
⟶
(
x2
x65
x64
⟶
False
)
⟶
False
)
⟶
(
(
x2
x62
x4
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
⟶
x61
x64
⟶
(
x59
(
x60
x65
)
(
x60
x64
)
=
x59
x64
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
⟶
x61
x64
⟶
(
x5
(
x60
x65
)
(
x60
x64
)
=
x60
(
x5
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x61
x65
⟶
(
x5
(
x5
x66
x64
)
x65
=
x5
x66
(
x5
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x7
x6
⟶
False
)
⟶
False
)
⟶
(
(
x2
x7
x58
⟶
False
)
⟶
False
)
⟶
(
(
x8
x7
x6
x58
⟶
False
)
⟶
False
)
⟶
(
(
x57
x7
⟶
False
)
⟶
False
)
⟶
(
x63
x7
⟶
False
)
⟶
(
(
x2
x56
x6
⟶
False
)
⟶
False
)
⟶
(
(
x2
x56
x58
⟶
False
)
⟶
False
)
⟶
(
(
x8
x56
x6
x58
⟶
False
)
⟶
False
)
⟶
(
(
x57
x56
⟶
False
)
⟶
False
)
⟶
(
x63
x56
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
⟶
x61
x64
⟶
(
x5
x65
(
x60
x64
)
=
x59
x65
x64
⟶
False
)
⟶
False
)
⟶
(
(
x2
x55
x6
⟶
False
)
⟶
False
)
⟶
(
(
x2
x55
x58
⟶
False
)
⟶
False
)
⟶
(
(
x8
x55
x6
x58
⟶
False
)
⟶
False
)
⟶
(
(
x63
x55
⟶
False
)
⟶
False
)
⟶
(
(
x60
(
x60
x7
)
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x60
(
x60
x56
)
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x60
x7
=
x60
x7
⟶
False
)
⟶
False
)
⟶
(
(
x60
x56
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x60
x55
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x7
)
(
x60
x7
)
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x7
)
(
x60
x56
)
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x7
)
x55
=
x60
x7
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x56
)
(
x60
x7
)
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x56
)
(
x60
x56
)
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x56
)
x56
=
x60
x7
⟶
False
)
⟶
False
)
⟶
(
(
x59
(
x60
x56
)
x55
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
x7
x7
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x59
x7
x56
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
x7
x55
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x59
x56
(
x60
x56
)
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x59
x56
x7
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
x56
x56
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x59
x56
x55
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
x55
(
x60
x7
)
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x59
x55
(
x60
x56
)
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
x55
x7
=
x60
x7
⟶
False
)
⟶
False
)
⟶
(
(
x59
x55
x56
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x59
x55
x55
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x5
(
x60
x7
)
x7
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x5
(
x60
x7
)
x56
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
(
x60
x56
)
(
x60
x56
)
=
x60
x7
⟶
False
)
⟶
False
)
⟶
(
(
x5
(
x60
x56
)
x7
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
(
x60
x56
)
x56
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x5
(
x60
x56
)
x55
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
x7
(
x60
x7
)
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x5
x7
(
x60
x56
)
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
x7
x55
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x5
x56
(
x60
x7
)
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
x56
(
x60
x56
)
=
x55
⟶
False
)
⟶
False
)
⟶
(
(
x5
x56
x56
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x5
x56
x55
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
x55
(
x60
x7
)
=
x60
x7
⟶
False
)
⟶
False
)
⟶
(
(
x5
x55
(
x60
x56
)
=
x60
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
x55
x7
=
x7
⟶
False
)
⟶
False
)
⟶
(
(
x5
x55
x56
=
x56
⟶
False
)
⟶
False
)
⟶
(
(
x5
x55
x55
=
x55
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x3
x64
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
(
x63
x66
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x66
)
⟶
x2
x65
x64
⟶
(
x8
x65
x66
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
(
x63
x66
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x66
)
⟶
x8
x65
x66
x64
⟶
(
x2
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x10
x64
⟶
(
x9
x65
x64
=
x5
x65
x64
⟶
False
)
⟶
False
)
⟶
(
(
x58
=
x4
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x12
x64
=
x11
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x53
x64
=
x54
x64
⟶
False
)
⟶
False
)
⟶
(
(
x13
x14
⟶
False
)
⟶
False
)
⟶
(
(
x63
x14
⟶
False
)
⟶
False
)
⟶
(
(
x10
x15
⟶
False
)
⟶
False
)
⟶
(
(
x13
x15
⟶
False
)
⟶
False
)
⟶
(
(
x61
x15
⟶
False
)
⟶
False
)
⟶
(
(
x63
x15
⟶
False
)
⟶
False
)
⟶
(
(
x16
x17
⟶
False
)
⟶
False
)
⟶
(
(
x13
x17
⟶
False
)
⟶
False
)
⟶
(
(
x10
x18
⟶
False
)
⟶
False
)
⟶
(
(
x16
x18
⟶
False
)
⟶
False
)
⟶
(
(
x13
x18
⟶
False
)
⟶
False
)
⟶
(
(
x61
x18
⟶
False
)
⟶
False
)
⟶
(
(
x19
x20
⟶
False
)
⟶
False
)
⟶
(
(
x52
x20
⟶
False
)
⟶
False
)
⟶
(
x63
x20
⟶
False
)
⟶
(
(
x57
x51
⟶
False
)
⟶
False
)
⟶
(
(
x13
x51
⟶
False
)
⟶
False
)
⟶
(
(
x10
x50
⟶
False
)
⟶
False
)
⟶
(
(
x57
x50
⟶
False
)
⟶
False
)
⟶
(
(
x13
x50
⟶
False
)
⟶
False
)
⟶
(
(
x61
x50
⟶
False
)
⟶
False
)
⟶
(
(
x61
x49
⟶
False
)
⟶
False
)
⟶
(
x63
x49
⟶
False
)
⟶
(
x63
x48
⟶
False
)
⟶
(
(
x52
x21
⟶
False
)
⟶
False
)
⟶
(
x63
x21
⟶
False
)
⟶
(
(
x13
x22
⟶
False
)
⟶
False
)
⟶
(
(
x10
x47
⟶
False
)
⟶
False
)
⟶
(
(
x61
x23
⟶
False
)
⟶
False
)
⟶
(
(
x63
x46
⟶
False
)
⟶
False
)
⟶
(
(
x52
x24
⟶
False
)
⟶
False
)
⟶
(
x63
x24
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x2
x64
x6
⟶
(
x12
(
x25
x65
x64
)
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x2
x64
x6
⟶
(
x53
(
x25
x65
x64
)
=
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 x67 .
x2
x67
x6
⟶
x2
x64
x6
⟶
x10
x66
⟶
x10
x65
⟶
x67
=
x66
⟶
x64
=
x65
⟶
(
x26
x67
x64
=
x5
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x60
(
x60
x64
)
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
(
x16
x65
⟶
False
)
⟶
x10
x65
⟶
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
x16
(
x5
x65
x64
)
⟶
False
)
⟶
(
x45
x44
⟶
False
)
⟶
(
x45
x6
⟶
False
)
⟶
(
∀ x64 x65 .
x10
x65
⟶
x10
x64
⟶
(
x10
(
x59
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x61
x64
⟶
(
x61
(
x60
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x61
x64
⟶
x63
(
x60
x64
)
⟶
False
)
⟶
(
(
x52
x4
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x10
x65
⟶
x10
x64
⟶
(
x10
(
x5
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x19
x4
⟶
False
)
⟶
False
)
⟶
(
(
x19
x6
⟶
False
)
⟶
False
)
⟶
(
(
x19
x44
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
⟶
x61
x64
⟶
(
x61
(
x59
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x10
x64
⟶
(
x10
(
x60
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x10
x64
⟶
(
x61
(
x60
x64
)
⟶
False
)
⟶
False
)
⟶
(
(
x27
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
⟶
x61
x64
⟶
(
x61
(
x5
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
x63
x44
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x10
(
x11
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x16
x65
⟶
x10
x65
⟶
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
(
x57
(
x59
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x16
x65
⟶
x10
x65
⟶
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
(
x16
(
x59
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
(
x16
(
x59
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
(
x63
x62
⟶
False
)
⟶
False
)
⟶
(
x63
x6
⟶
False
)
⟶
(
(
x43
x44
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x10
(
x54
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
(
x57
(
x59
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
(
x16
x65
⟶
False
)
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
x57
(
x59
x64
x65
)
⟶
False
)
⟶
(
∀ x64 x65 .
(
x16
x65
⟶
False
)
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
x16
(
x59
x65
x64
)
⟶
False
)
⟶
(
∀ x64 .
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
x57
(
x60
x64
)
⟶
False
)
⟶
(
∀ x64 .
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
(
x61
(
x60
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
x16
(
x60
x64
)
⟶
False
)
⟶
(
∀ x64 .
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
(
x61
(
x60
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x16
x65
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
(
x16
(
x5
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x16
x65
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
(
x16
(
x5
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x10
x65
⟶
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
(
x57
(
x5
x64
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x57
x65
⟶
x10
x65
⟶
(
x16
x64
⟶
False
)
⟶
x10
x64
⟶
(
x57
(
x5
x65
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
(
x57
x65
⟶
False
)
⟶
x10
x65
⟶
(
x57
x64
⟶
False
)
⟶
x10
x64
⟶
x57
(
x5
x65
x64
)
⟶
False
)
⟶
(
∀ x64 x65 .
(
x63
x65
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x65
)
⟶
(
x8
(
x42
x64
x65
)
x65
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x2
(
x28
x64
)
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
(
x63
x66
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
x2
x64
(
x1
x66
)
⟶
x8
x65
x66
x64
⟶
(
x2
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x10
x64
⟶
(
x2
(
x9
x65
x64
)
x6
⟶
False
)
⟶
False
)
⟶
(
(
x2
x58
(
x1
x6
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x2
x64
x6
⟶
(
x2
(
x25
x65
x64
)
x44
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x61
(
x60
x64
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x2
(
x12
x64
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x61
x64
⟶
(
x2
(
x53
x64
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x2
x64
x6
⟶
(
x2
(
x26
x65
x64
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 x67 x68 x69 x70 .
x61
x70
⟶
x61
x64
⟶
x2
x69
x6
⟶
x2
x65
x6
⟶
x2
x68
x6
⟶
x2
x66
x6
⟶
x70
=
x25
x69
x65
⟶
x64
=
x25
x68
x66
⟶
x67
=
x25
(
x26
x69
x68
)
(
x26
x65
x66
)
⟶
(
x67
=
x5
x70
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x65
=
x25
(
x26
(
x29
x65
x64
x66
)
(
x30
x65
x64
x66
)
)
(
x26
(
x31
x65
x64
x66
)
(
x32
x65
x64
x66
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x64
=
x25
(
x30
x65
x64
x66
)
(
x32
x65
x64
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x66
=
x25
(
x29
x65
x64
x66
)
(
x31
x65
x64
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x2
(
x32
x65
x64
x66
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x2
(
x30
x65
x64
x66
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x2
(
x31
x65
x64
x66
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 x66 .
x61
x66
⟶
x61
x64
⟶
x65
=
x5
x66
x64
⟶
(
x2
(
x29
x65
x64
x66
)
x6
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x10
x64
⟶
(
x9
x65
x64
=
x9
x64
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x61
x65
⟶
x61
x64
⟶
(
x5
x65
x64
=
x5
x64
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x2
x65
x6
⟶
x2
x64
x6
⟶
(
x26
x65
x64
=
x26
x64
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
(
x57
x64
⟶
False
)
⟶
(
x16
x64
⟶
False
)
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
(
x57
x64
⟶
False
)
⟶
(
x16
x64
⟶
False
)
⟶
(
x63
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x2
x64
(
x1
x6
)
⟶
(
x27
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x16
x64
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
x57
x64
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
x13
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x13
x64
⟶
(
x57
x64
⟶
False
)
⟶
(
x16
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x13
x64
⟶
(
x57
x64
⟶
False
)
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x2
x64
(
x1
x44
)
⟶
(
x43
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x16
x64
⟶
x57
x64
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x16
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x16
x64
⟶
x63
x64
⟶
False
)
⟶
(
∀ x64 .
x27
x64
⟶
(
x43
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x13
x64
⟶
(
x16
x64
⟶
False
)
⟶
(
x57
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
(
x63
x64
⟶
False
)
⟶
x13
x64
⟶
(
x16
x64
⟶
False
)
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x10
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x27
x64
⟶
(
x33
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x57
x64
⟶
x16
x64
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x57
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x13
x64
⟶
x57
x64
⟶
x63
x64
⟶
False
)
⟶
(
∀ x64 .
x10
x64
⟶
(
x61
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x2
x64
x44
⟶
(
x61
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x34
x64
⟶
(
x27
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x41
x64
⟶
(
x13
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x41
x64
⟶
(
x10
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x41
x64
⟶
(
x61
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x35
x64
⟶
(
x34
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x63
x64
⟶
(
x19
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 .
x2
x64
x58
⟶
(
x52
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x64 x65 .
x52
x65
⟶
x2
x64
(
x1
x65
)
⟶
(