Search for blocks/addresses/...
Proofgold Asset
asset id
4ac47fe0bd325d1c0c1718da140947ef0fd0ddefbed5765a8c123bae12955089
asset hash
3d08108b9efbe49be98237bae5cf42bce2f1dab49d460f4d1fb5a4dca3e05561
bday / block
3137
tx
00ca5..
preasset
doc published by
PrJJf..
Known
False_def
False_def
:
False
=
∀ x1 : ο .
x1
Known
True_def
True_def
:
True
=
∀ x1 : ο .
x1
⟶
x1
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
13bcd..
iff_def
:
iff
=
λ x1 x2 : ο .
and
(
x1
⟶
x2
)
(
x2
⟶
x1
)
Known
2540e..
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
9ac15..
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
dd7e1..
:
∀ x0 : ο .
or
(
x0
=
True
)
(
x0
=
False
)
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Theorem
06486..
:
∀ x0 x1 : ο .
or
x0
x1
⟶
not
x0
⟶
x1
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
e7295..
:
∀ x0 x1 : ο .
x0
=
x1
⟶
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
(proof)
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
fcbcf..
not_all_ex_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 .
x0
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
not
(
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
9ac15..
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
35ec9..
:
∀ x0 x1 : ο .
not
(
and
x0
x1
)
⟶
or
(
not
x0
)
(
not
x1
)
(proof)
Theorem
ee74e..
:
∀ x0 x1 : ο .
not
(
or
x0
x1
)
⟶
and
(
not
x0
)
(
not
x1
)
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
13bcd..
iff_def
:
iff
=
λ x1 x2 : ο .
and
(
x1
⟶
x2
)
(
x2
⟶
x1
)
Known
2540e..
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
451e3..
:
∀ x0 x1 : ο .
not
(
x0
=
x1
)
⟶
(
x1
⟶
x0
)
⟶
not
(
x0
⟶
x1
)
(proof)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
5f823..
not_ex_all_demorgan_i
:
∀ x0 :
ι → ο
.
not
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
∀ x1 .
not
(
x0
x1
)
(proof)
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
b4782..
contra
:
∀ x0 : ο .
(
not
x0
⟶
False
)
⟶
x0
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
0ff1b..
:
∀ x0 x1 : ο .
not
(
x0
⟶
x1
)
⟶
and
x0
(
not
x1
)
(proof)
Known
5f92b..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Theorem
5f92b..
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
(proof)
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Theorem
91bfe..
dnegI
:
∀ x0 : ο .
x0
⟶
not
(
not
x0
)
(proof)
Theorem
bc5df..
:
∀ x0 x1 : ο .
(
not
x0
⟶
not
x1
)
⟶
x1
⟶
x0
(proof)
Theorem
0b2fd..
:
∀ x0 x1 : ο .
(
not
x0
⟶
x1
)
⟶
not
x1
⟶
x0
(proof)
Theorem
a5e64..
:
∀ x0 x1 : ο .
(
x0
⟶
not
x1
)
⟶
x1
⟶
not
x0
(proof)
Theorem
5232a..
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
not
x1
⟶
not
x0
(proof)