Search for blocks/addresses/...

Proofgold Asset

asset id
3f298080cedd9ec8057f28b2592ea38b2f1b680ec2b4896575841a885ba0d478
asset hash
e6219f94b726e3852b226ec615896209bd89c3b19e0103cc8050d316ba16d7c5
bday / block
36387
tx
c5cfe..
preasset
doc published by PrCmT..
Known df_polarityN__df_psubclN__df_lhyp__df_laut__df_watsN__df_pautN__df_ldil__df_ltrn__df_dilN__df_trnN__df_trl__df_tgrp__df_tendo__df_edring_rN__df_edring__df_dveca__df_disoa__df_dvech : ∀ x0 : ο . (wceq cpolN (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) catm)) (λ x2 . cin (cfv (cv x1) catm) (ciin (λ x3 . cv x2) (λ x3 . cfv (cfv (cv x3) (cfv (cv x1) coc)) (cfv (cv x1) cpmap))))))wceq cpscN (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wa (wss (cv x2) (cfv (cv x1) catm)) (wceq (cfv (cfv (cv x2) (cfv (cv x1) cpolN)) (cfv (cv x1) cpolN)) (cv x2)))))wceq clh (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wbr (cv x2) (cfv (cv x1) cp1) (cfv (cv x1) ccvr)) (λ x2 . cfv (cv x1) cbs)))wceq claut (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wa (wf1o (cfv (cv x1) cbs) (cfv (cv x1) cbs) (cv x2)) (wral (λ x3 . wral (λ x4 . wb (wbr (cv x3) (cv x4) (cfv (cv x1) cple)) (wbr (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)) (cfv (cv x1) cple))) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) cbs)))))wceq cwpointsN (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) catm) (λ x2 . cdif (cfv (cv x1) catm) (cfv (csn (cv x2)) (cfv (cv x1) cpolN)))))wceq cpautN (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wa (wf1o (cfv (cv x1) cpsubsp) (cfv (cv x1) cpsubsp) (cv x2)) (wral (λ x3 . wral (λ x4 . wb (wss (cv x3) (cv x4)) (wss (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)))) (λ x4 . cfv (cv x1) cpsubsp)) (λ x3 . cfv (cv x1) cpsubsp)))))wceq cldil (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . crab (λ x3 . wral (λ x4 . wbr (cv x4) (cv x2) (cfv (cv x1) cple)wceq (cfv (cv x4) (cv x3)) (cv x4)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x1) claut))))wceq cltrn (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wa (wn (wbr (cv x4) (cv x2) (cfv (cv x1) cple))) (wn (wbr (cv x5) (cv x2) (cfv (cv x1) cple)))wceq (co (co (cv x4) (cfv (cv x4) (cv x3)) (cfv (cv x1) cjn)) (cv x2) (cfv (cv x1) cmee)) (co (co (cv x5) (cfv (cv x5) (cv x3)) (cfv (cv x1) cjn)) (cv x2) (cfv (cv x1) cmee))) (λ x5 . cfv (cv x1) catm)) (λ x4 . cfv (cv x1) catm)) (λ x3 . cfv (cv x2) (cfv (cv x1) cldil)))))wceq cdilN (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) catm) (λ x2 . crab (λ x3 . wral (λ x4 . wss (cv x4) (cfv (cv x2) (cfv (cv x1) cwpointsN))wceq (cfv (cv x4) (cv x3)) (cv x4)) (λ x4 . cfv (cv x1) cpsubsp)) (λ x3 . cfv (cv x1) cpautN))))wceq ctrnN (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) catm) (λ x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cin (co (cv x4) (cfv (cv x4) (cv x3)) (cfv (cv x1) cpadd)) (cfv (csn (cv x2)) (cfv (cv x1) cpolN))) (cin (co (cv x5) (cfv (cv x5) (cv x3)) (cfv (cv x1) cpadd)) (cfv (csn (cv x2)) (cfv (cv x1) cpolN)))) (λ x5 . cfv (cv x2) (cfv (cv x1) cwpointsN))) (λ x4 . cfv (cv x2) (cfv (cv x1) cwpointsN))) (λ x3 . cfv (cv x2) (cfv (cv x1) cdilN)))))wceq ctrl (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . cmpt (λ x3 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x3 . crio (λ x4 . wral (λ x5 . wn (wbr (cv x5) (cv x2) (cfv (cv x1) cple))wceq (cv x4) (co (co (cv x5) (cfv (cv x5) (cv x3)) (cfv (cv x1) cjn)) (cv x2) (cfv (cv x1) cmee))) (λ x5 . cfv (cv x1) catm)) (λ x4 . cfv (cv x1) cbs)))))wceq ctgrp (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . cpr (cop (cfv cnx cbs) (cfv (cv x2) (cfv (cv x1) cltrn))) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x3 x4 . ccom (cv x3) (cv x4)))))))wceq ctendo (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . cab (λ x3 . w3a (wf (cfv (cv x2) (cfv (cv x1) cltrn)) (cfv (cv x2) (cfv (cv x1) cltrn)) (cv x3)) (wral (λ x4 . wral (λ x5 . wceq (cfv (ccom (cv x4) (cv x5)) (cv x3)) (ccom (cfv (cv x4) (cv x3)) (cfv (cv x5) (cv x3)))) (λ x5 . cfv (cv x2) (cfv (cv x1) cltrn))) (λ x4 . cfv (cv x2) (cfv (cv x1) cltrn))) (wral (λ x4 . wbr (cfv (cfv (cv x4) (cv x3)) (cfv (cv x2) (cfv (cv x1) ctrl))) (cfv (cv x4) (cfv (cv x2) (cfv (cv x1) ctrl))) (cfv (cv x1) cple)) (λ x4 . cfv (cv x2) (cfv (cv x1) cltrn)))))))wceq cedring_rN (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . ctp (cop (cfv cnx cbs) (cfv (cv x2) (cfv (cv x1) ctendo))) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cmpt (λ x5 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x5 . ccom (cfv (cv x5) (cv x3)) (cfv (cv x5) (cv x4)))))) (cop (cfv cnx cmulr) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . ccom (cv x4) (cv x3)))))))wceq cedring (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . ctp (cop (cfv cnx cbs) (cfv (cv x2) (cfv (cv x1) ctendo))) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cmpt (λ x5 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x5 . ccom (cfv (cv x5) (cv x3)) (cfv (cv x5) (cv x4)))))) (cop (cfv cnx cmulr) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . ccom (cv x3) (cv x4)))))))wceq cdveca (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . cun (ctp (cop (cfv cnx cbs) (cfv (cv x2) (cfv (cv x1) cltrn))) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x3 x4 . ccom (cv x3) (cv x4)))) (cop (cfv cnx csca) (cfv (cv x2) (cfv (cv x1) cedring)))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x3 x4 . cfv (cv x4) (cv x3))))))))wceq cdia (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . cmpt (λ x3 . crab (λ x4 . wbr (cv x4) (cv x2) (cfv (cv x1) cple)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . crab (λ x4 . wbr (cfv (cv x4) (cfv (cv x2) (cfv (cv x1) ctrl))) (cv x3) (cfv (cv x1) cple)) (λ x4 . cfv (cv x2) (cfv (cv x1) cltrn))))))wceq cdvh (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cv x1) clh) (λ x2 . cun (ctp (cop (cfv cnx cbs) (cxp (cfv (cv x2) (cfv (cv x1) cltrn)) (cfv (cv x2) (cfv (cv x1) ctendo)))) (cop (cfv cnx cplusg) (cmpt2 (λ x3 x4 . cxp (cfv (cv x2) (cfv (cv x1) cltrn)) (cfv (cv x2) (cfv (cv x1) ctendo))) (λ x3 x4 . cxp (cfv (cv x2) (cfv (cv x1) cltrn)) (cfv (cv x2) (cfv (cv x1) ctendo))) (λ x3 x4 . cop (ccom (cfv (cv x3) c1st) (cfv (cv x4) c1st)) (cmpt (λ x5 . cfv (cv x2) (cfv (cv x1) cltrn)) (λ x5 . ccom (cfv (cv x5) (cfv (cv x3) c2nd)) (cfv (cv x5) (cfv (cv x4) c2nd))))))) (cop (cfv cnx csca) (cfv (cv x2) (cfv (cv x1) cedring)))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x3 x4 . cfv (cv x2) (cfv (cv x1) ctendo)) (λ x3 x4 . cxp (cfv (cv x2) (cfv (cv x1) cltrn)) (cfv (cv x2) (cfv (cv x1) ctendo))) (λ x3 x4 . cop (cfv (cfv (cv x4) c1st) (cv x3)) (ccom (cv x3) (cfv (cv x4) c2nd)))))))))x0)x0
Theorem df_polarityN : wceq cpolN (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cpw (cfv (cv x0) catm)) (λ x1 . cin (cfv (cv x0) catm) (ciin (λ x2 . cv x1) (λ x2 . cfv (cfv (cv x2) (cfv (cv x0) coc)) (cfv (cv x0) cpmap)))))) (proof)
Theorem df_psubclN : wceq cpscN (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wa (wss (cv x1) (cfv (cv x0) catm)) (wceq (cfv (cfv (cv x1) (cfv (cv x0) cpolN)) (cfv (cv x0) cpolN)) (cv x1))))) (proof)
Theorem df_lhyp : wceq clh (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wbr (cv x1) (cfv (cv x0) cp1) (cfv (cv x0) ccvr)) (λ x1 . cfv (cv x0) cbs))) (proof)
Theorem df_laut : wceq claut (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wa (wf1o (cfv (cv x0) cbs) (cfv (cv x0) cbs) (cv x1)) (wral (λ x2 . wral (λ x3 . wb (wbr (cv x2) (cv x3) (cfv (cv x0) cple)) (wbr (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)) (cfv (cv x0) cple))) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) cbs))))) (proof)
Theorem df_watsN : wceq cwpointsN (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) catm) (λ x1 . cdif (cfv (cv x0) catm) (cfv (csn (cv x1)) (cfv (cv x0) cpolN))))) (proof)
Theorem df_pautN : wceq cpautN (cmpt (λ x0 . cvv) (λ x0 . cab (λ x1 . wa (wf1o (cfv (cv x0) cpsubsp) (cfv (cv x0) cpsubsp) (cv x1)) (wral (λ x2 . wral (λ x3 . wb (wss (cv x2) (cv x3)) (wss (cfv (cv x2) (cv x1)) (cfv (cv x3) (cv x1)))) (λ x3 . cfv (cv x0) cpsubsp)) (λ x2 . cfv (cv x0) cpsubsp))))) (proof)
Theorem df_ldil : wceq cldil (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . crab (λ x2 . wral (λ x3 . wbr (cv x3) (cv x1) (cfv (cv x0) cple)wceq (cfv (cv x3) (cv x2)) (cv x3)) (λ x3 . cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) claut)))) (proof)
Theorem df_ltrn : wceq cltrn (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wa (wn (wbr (cv x3) (cv x1) (cfv (cv x0) cple))) (wn (wbr (cv x4) (cv x1) (cfv (cv x0) cple)))wceq (co (co (cv x3) (cfv (cv x3) (cv x2)) (cfv (cv x0) cjn)) (cv x1) (cfv (cv x0) cmee)) (co (co (cv x4) (cfv (cv x4) (cv x2)) (cfv (cv x0) cjn)) (cv x1) (cfv (cv x0) cmee))) (λ x4 . cfv (cv x0) catm)) (λ x3 . cfv (cv x0) catm)) (λ x2 . cfv (cv x1) (cfv (cv x0) cldil))))) (proof)
Theorem df_dilN : wceq cdilN (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) catm) (λ x1 . crab (λ x2 . wral (λ x3 . wss (cv x3) (cfv (cv x1) (cfv (cv x0) cwpointsN))wceq (cfv (cv x3) (cv x2)) (cv x3)) (λ x3 . cfv (cv x0) cpsubsp)) (λ x2 . cfv (cv x0) cpautN)))) (proof)
Theorem df_trnN : wceq ctrnN (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) catm) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wceq (cin (co (cv x3) (cfv (cv x3) (cv x2)) (cfv (cv x0) cpadd)) (cfv (csn (cv x1)) (cfv (cv x0) cpolN))) (cin (co (cv x4) (cfv (cv x4) (cv x2)) (cfv (cv x0) cpadd)) (cfv (csn (cv x1)) (cfv (cv x0) cpolN)))) (λ x4 . cfv (cv x1) (cfv (cv x0) cwpointsN))) (λ x3 . cfv (cv x1) (cfv (cv x0) cwpointsN))) (λ x2 . cfv (cv x1) (cfv (cv x0) cdilN))))) (proof)
Theorem df_trl : wceq ctrl (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . cmpt (λ x2 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x2 . crio (λ x3 . wral (λ x4 . wn (wbr (cv x4) (cv x1) (cfv (cv x0) cple))wceq (cv x3) (co (co (cv x4) (cfv (cv x4) (cv x2)) (cfv (cv x0) cjn)) (cv x1) (cfv (cv x0) cmee))) (λ x4 . cfv (cv x0) catm)) (λ x3 . cfv (cv x0) cbs))))) (proof)
Theorem df_tgrp : wceq ctgrp (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . cpr (cop (cfv cnx cbs) (cfv (cv x1) (cfv (cv x0) cltrn))) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x2 x3 . ccom (cv x2) (cv x3))))))) (proof)
Theorem df_tendo : wceq ctendo (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . cab (λ x2 . w3a (wf (cfv (cv x1) (cfv (cv x0) cltrn)) (cfv (cv x1) (cfv (cv x0) cltrn)) (cv x2)) (wral (λ x3 . wral (λ x4 . wceq (cfv (ccom (cv x3) (cv x4)) (cv x2)) (ccom (cfv (cv x3) (cv x2)) (cfv (cv x4) (cv x2)))) (λ x4 . cfv (cv x1) (cfv (cv x0) cltrn))) (λ x3 . cfv (cv x1) (cfv (cv x0) cltrn))) (wral (λ x3 . wbr (cfv (cfv (cv x3) (cv x2)) (cfv (cv x1) (cfv (cv x0) ctrl))) (cfv (cv x3) (cfv (cv x1) (cfv (cv x0) ctrl))) (cfv (cv x0) cple)) (λ x3 . cfv (cv x1) (cfv (cv x0) cltrn))))))) (proof)
Theorem df_edring_rN : wceq cedring_rN (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . ctp (cop (cfv cnx cbs) (cfv (cv x1) (cfv (cv x0) ctendo))) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cmpt (λ x4 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x4 . ccom (cfv (cv x4) (cv x2)) (cfv (cv x4) (cv x3)))))) (cop (cfv cnx cmulr) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . ccom (cv x3) (cv x2))))))) (proof)
Theorem df_edring : wceq cedring (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . ctp (cop (cfv cnx cbs) (cfv (cv x1) (cfv (cv x0) ctendo))) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cmpt (λ x4 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x4 . ccom (cfv (cv x4) (cv x2)) (cfv (cv x4) (cv x3)))))) (cop (cfv cnx cmulr) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . ccom (cv x2) (cv x3))))))) (proof)
Theorem df_dveca : wceq cdveca (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . cun (ctp (cop (cfv cnx cbs) (cfv (cv x1) (cfv (cv x0) cltrn))) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x2 x3 . ccom (cv x2) (cv x3)))) (cop (cfv cnx csca) (cfv (cv x1) (cfv (cv x0) cedring)))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x2 x3 . cfv (cv x3) (cv x2)))))))) (proof)
Theorem df_disoa : wceq cdia (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . cmpt (λ x2 . crab (λ x3 . wbr (cv x3) (cv x1) (cfv (cv x0) cple)) (λ x3 . cfv (cv x0) cbs)) (λ x2 . crab (λ x3 . wbr (cfv (cv x3) (cfv (cv x1) (cfv (cv x0) ctrl))) (cv x2) (cfv (cv x0) cple)) (λ x3 . cfv (cv x1) (cfv (cv x0) cltrn)))))) (proof)
Theorem df_dvech : wceq cdvh (cmpt (λ x0 . cvv) (λ x0 . cmpt (λ x1 . cfv (cv x0) clh) (λ x1 . cun (ctp (cop (cfv cnx cbs) (cxp (cfv (cv x1) (cfv (cv x0) cltrn)) (cfv (cv x1) (cfv (cv x0) ctendo)))) (cop (cfv cnx cplusg) (cmpt2 (λ x2 x3 . cxp (cfv (cv x1) (cfv (cv x0) cltrn)) (cfv (cv x1) (cfv (cv x0) ctendo))) (λ x2 x3 . cxp (cfv (cv x1) (cfv (cv x0) cltrn)) (cfv (cv x1) (cfv (cv x0) ctendo))) (λ x2 x3 . cop (ccom (cfv (cv x2) c1st) (cfv (cv x3) c1st)) (cmpt (λ x4 . cfv (cv x1) (cfv (cv x0) cltrn)) (λ x4 . ccom (cfv (cv x4) (cfv (cv x2) c2nd)) (cfv (cv x4) (cfv (cv x3) c2nd))))))) (cop (cfv cnx csca) (cfv (cv x1) (cfv (cv x0) cedring)))) (csn (cop (cfv cnx cvsca) (cmpt2 (λ x2 x3 . cfv (cv x1) (cfv (cv x0) ctendo)) (λ x2 x3 . cxp (cfv (cv x1) (cfv (cv x0) cltrn)) (cfv (cv x1) (cfv (cv x0) ctendo))) (λ x2 x3 . cop (cfv (cfv (cv x3) c1st) (cv x2)) (ccom (cv x2) (cfv (cv x3) c2nd))))))))) (proof)