Search for blocks/addresses/...
Proofgold Asset
asset id
eb68106477f93ce3f09c8293a8b1269efc86d63e74fbbaf502fea3fbc8c90f0e
asset hash
410e905525bc3c62ed0127d7e406e1531eb96a8ab15ba8fd75afb3c59899af86
bday / block
5368
tx
705e2..
preasset
doc published by
Pr6Pc..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLev
SNoLev
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Definition
PNoEq_
PNoEq_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
Definition
SNoEq_
SNoEq_
:=
λ x0 x1 x2 .
PNoEq_
x0
(
λ x3 .
x3
∈
x1
)
(
λ x3 .
x3
∈
x2
)
Known
SNo_eq
SNo_eq
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
=
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
x0
=
x1
Known
SNo_0
SNo_0
:
SNo
0
Known
SNoLev_0
SNoLev_0
:
SNoLev
0
=
0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Theorem
SNoLev_0_eq_0
SNoLev_0_eq_0
:
∀ x0 .
SNo
x0
⟶
SNoLev
x0
=
0
⟶
x0
=
0
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
SNoElts_
SNoElts_
:=
λ x0 .
binunion
x0
{
SetAdjoin
x1
(
Sing
1
)
|x1 ∈
x0
}
Param
exactly1of2
exactly1of2
:
ο
→
ο
→
ο
Definition
SNo_
SNo_
:=
λ x0 x1 .
and
(
x1
⊆
SNoElts_
x0
)
(
∀ x2 .
x2
∈
x0
⟶
exactly1of2
(
SetAdjoin
x2
(
Sing
1
)
∈
x1
)
(
x2
∈
x1
)
)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
binintersect_Subq_2
binintersect_Subq_2
:
∀ x0 x1 .
binintersect
x0
x1
⊆
x1
Known
exactly1of2_E
exactly1of2_E
:
∀ x0 x1 : ο .
exactly1of2
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
not
x1
⟶
x2
)
⟶
(
not
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
exactly1of2_I1
exactly1of2_I1
:
∀ x0 x1 : ο .
x0
⟶
not
x1
⟶
exactly1of2
x0
x1
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Known
exactly1of2_I2
exactly1of2_I2
:
∀ x0 x1 : ο .
not
x0
⟶
x1
⟶
exactly1of2
x0
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Param
ordinal
ordinal
:
ι
→
ο
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordinal_TransSet
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
SNoLev_
SNoLev_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
SNoLev
x0
)
x0
Theorem
restr_SNo_
restr_SNo_
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNo_
x1
(
binintersect
x0
(
SNoElts_
x1
)
)
(proof)
Known
SNo_SNo
SNo_SNo
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo_
x0
x1
⟶
SNo
x1
Known
ordinal_Hered
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordinal
x1
Theorem
restr_SNo
restr_SNo
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNo
(
binintersect
x0
(
SNoElts_
x1
)
)
(proof)
Known
SNoLev_uniq2
SNoLev_uniq2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
SNo_
x0
x1
⟶
SNoLev
x1
=
x0
Theorem
restr_SNoLev
restr_SNoLev
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNoLev
(
binintersect
x0
(
SNoElts_
x1
)
)
=
x1
(proof)
Known
SNoEq_I
SNoEq_I
:
∀ x0 x1 x2 .
(
∀ x3 .
x3
∈
x0
⟶
iff
(
x3
∈
x1
)
(
x3
∈
x2
)
)
⟶
SNoEq_
x0
x1
x2
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
restr_SNoEq
restr_SNoEq
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNoEq_
x1
(
binintersect
x0
(
SNoElts_
x1
)
)
x0
(proof)
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
SNoL
SNoL
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Known
SNo_eta
SNo_eta
:
∀ x0 .
SNo
x0
⟶
x0
=
SNoCut
(
SNoL
x0
)
(
SNoR
x0
)
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Known
SNoLtE
SNoLtE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
SNoLev
x3
∈
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
SNoLev
x3
∈
x1
⟶
x2
)
⟶
(
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
x2
)
⟶
(
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoLtI2
SNoLtI2
:
∀ x0 x1 .
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
SNoLt
x0
x1
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Known
SNoLtI3
SNoLtI3
:
∀ x0 x1 .
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
SNoLt
x0
x1
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
restr_SNo_SNoCut
restr_SNo_SNoCut
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
∀ x2 : ο .
(
SNoCutP
{x3 ∈
SNoL
x0
|
SNoLev
x3
∈
x1
}
{x3 ∈
SNoR
x0
|
SNoLev
x3
∈
x1
}
⟶
binintersect
x0
(
SNoElts_
x1
)
=
SNoCut
{x4 ∈
SNoL
x0
|
SNoLev
x4
∈
x1
}
{x4 ∈
SNoR
x0
|
SNoLev
x4
∈
x1
}
⟶
x2
)
⟶
x2
(proof)
Param
SNoS_
SNoS_
:
ι
→
ι
Param
omega
omega
:
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
minus_SNo_Lev
minus_SNo_Lev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
minus_SNo
x0
)
=
SNoLev
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Theorem
minus_SNo_SNoS_omega
minus_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
minus_SNo
x0
∈
SNoS_
omega
(proof)
Definition
eps_
eps_
:=
λ x0 .
binunion
(
Sing
0
)
{
SetAdjoin
(
ordsucc
x1
)
(
Sing
1
)
|x1 ∈
x0
}
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
tagged_not_ordinal
tagged_not_ordinal
:
∀ x0 .
not
(
ordinal
(
SetAdjoin
x0
(
Sing
1
)
)
)
Theorem
eps_ordinal_In_eq_0
eps_ordinal_In_eq_0
:
∀ x0 x1 .
ordinal
x1
⟶
x1
∈
eps_
x0
⟶
x1
=
0
(proof)
Known
In_0_1
In_0_1
:
0
∈
1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
eps_0_1
eps_0_1
:
eps_
0
=
1
(proof)
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
nat_ordsucc_in_ordsucc
nat_ordsucc_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
∈
ordsucc
x0
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
neq_0_ordsucc
neq_0_ordsucc
:
∀ x0 .
0
=
ordsucc
x0
⟶
∀ x1 : ο .
x1
Known
tagged_eqE_eq
tagged_eqE_eq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SetAdjoin
x0
(
Sing
1
)
=
SetAdjoin
x1
(
Sing
1
)
⟶
x0
=
x1
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
SNo__eps_
SNo__eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo_
(
ordsucc
x0
)
(
eps_
x0
)
(proof)
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Theorem
SNo_eps_
SNo_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNo
(
eps_
x0
)
(proof)
Theorem
SNoLev_eps_
SNoLev_eps_
:
∀ x0 .
x0
∈
omega
⟶
SNoLev
(
eps_
x0
)
=
ordsucc
x0
(proof)
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Theorem
SNo_eps_SNoS_omega
SNo_eps_SNoS_omega
:
∀ x0 .
x0
∈
omega
⟶
eps_
x0
∈
SNoS_
omega
(proof)
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Theorem
SNo_eps_decr
SNo_eps_decr
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
(
eps_
x0
)
(
eps_
x1
)
(proof)
Theorem
SNo_eps_pos
SNo_eps_pos
:
∀ x0 .
x0
∈
omega
⟶
SNoLt
0
(
eps_
x0
)
(proof)
Known
nat_complete_ind
nat_complete_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
ordinal_ordsucc_In_Subq
ordinal_ordsucc_In_Subq
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
ordsucc
x1
⊆
x0
Known
In_no3cycle
In_no3cycle
:
∀ x0 x1 x2 .
x0
∈
x1
⟶
x1
∈
x2
⟶
x2
∈
x0
⟶
False
Theorem
d115f..
SNo_pos_eps_Lt
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
SNoLt
0
x1
⟶
SNoLt
(
eps_
x0
)
x1
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_minus_Lt2
add_SNo_minus_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
Known
add_SNo_minus_Lt2b
add_SNo_minus_Lt2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
add_SNo_SNoS_omega
add_SNo_SNoS_omega
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
add_SNo
x0
x1
∈
SNoS_
omega
Theorem
add_SNo_omega_eps_Lt
add_SNo_omega_eps_Lt
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
∀ x1 .
x1
∈
SNoS_
omega
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
SNoLt
(
add_SNo
x0
(
eps_
x3
)
)
x1
)
⟶
x2
)
⟶
x2
(proof)
Definition
f8473..
diadic_open
:=
λ x0 .
and
(
x0
⊆
SNoS_
omega
)
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
(
add_SNo
x1
(
minus_SNo
(
eps_
x3
)
)
)
x4
⟶
SNoLt
x4
(
add_SNo
x1
(
eps_
x3
)
)
⟶
x4
∈
x0
)
⟶
x2
)
⟶
x2
)
Theorem
c974c..
diadic_open_I
:
∀ x0 .
x0
⊆
SNoS_
omega
⟶
(
∀ x1 .
x1
∈
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
(
add_SNo
x1
(
minus_SNo
(
eps_
x3
)
)
)
x4
⟶
SNoLt
x4
(
add_SNo
x1
(
eps_
x3
)
)
⟶
x4
∈
x0
)
⟶
x2
)
⟶
x2
)
⟶
f8473..
x0
(proof)
Definition
SNoL_omega
SNoL_omega
:=
λ x0 .
{x1 ∈
SNoS_
omega
|
SNoLt
x1
x0
}
Definition
SNoR_omega
SNoR_omega
:=
λ x0 .
Sep
(
SNoS_
omega
)
(
SNoLt
x0
)
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Theorem
7fb68..
diadic_open_SNoL_omega_I
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoL_omega
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
SNoLt
(
add_SNo
x1
(
eps_
x3
)
)
x0
)
⟶
x2
)
⟶
x2
)
⟶
f8473..
(
SNoL_omega
x0
)
(proof)
Theorem
58c46..
diadic_open_SNoR_omega_I
:
∀ x0 .
SNo
x0
⟶
(
∀ x1 .
x1
∈
SNoR_omega
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
SNoLt
x0
(
add_SNo
x1
(
minus_SNo
(
eps_
x3
)
)
)
)
⟶
x2
)
⟶
x2
)
⟶
f8473..
(
SNoR_omega
x0
)
(proof)
Definition
87ab7..
real
:=
{x0 ∈
SNoS_
(
ordsucc
omega
)
|
and
(
and
(
and
(
SNoL_omega
x0
=
0
⟶
∀ x1 : ο .
x1
)
(
SNoR_omega
x0
=
0
⟶
∀ x1 : ο .
x1
)
)
(
f8473..
(
SNoL_omega
x0
)
)
)
(
f8473..
(
SNoR_omega
x0
)
)
}
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
59424..
real_I
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
(
SNoL_omega
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
(
SNoR_omega
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
f8473..
(
SNoL_omega
x0
)
⟶
f8473..
(
SNoR_omega
x0
)
⟶
x0
∈
87ab7..
(proof)
Known
and4E
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
Theorem
e2acb..
real_E
:
∀ x0 .
x0
∈
87ab7..
⟶
∀ x1 : ο .
(
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
(
SNoL_omega
x0
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
SNoR_omega
x0
=
0
⟶
∀ x2 : ο .
x2
)
⟶
f8473..
(
SNoL_omega
x0
)
⟶
f8473..
(
SNoR_omega
x0
)
⟶
x1
)
⟶
x1
(proof)
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Theorem
2858a..
Subq_real_SNoS_ordsucc_omega
:
87ab7..
⊆
SNoS_
(
ordsucc
omega
)
(proof)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Param
SNo_extend0
SNo_extend0
:
ι
→
ι
Known
SNo_extend0_SNo_
SNo_extend0_SNo_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
ordsucc
(
SNoLev
x0
)
)
(
SNo_extend0
x0
)
Known
SNo_extend0_Lt
SNo_extend0_Lt
:
∀ x0 .
SNo
x0
⟶
SNoLt
(
SNo_extend0
x0
)
x0
Param
SNo_extend1
SNo_extend1
:
ι
→
ι
Known
SNo_extend1_SNo_
SNo_extend1_SNo_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
ordsucc
(
SNoLev
x0
)
)
(
SNo_extend1
x0
)
Known
SNo_extend1_Gt
SNo_extend1_Gt
:
∀ x0 .
SNo
x0
⟶
SNoLt
x0
(
SNo_extend1
x0
)
Theorem
73158..
Subq_SNoS_omega_real
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
x0
∈
87ab7..
(proof)
Theorem
354d7..
SNoCutP_SNoL_SNoR_omega
:
∀ x0 .
SNo
x0
⟶
SNoCutP
(
SNoL_omega
x0
)
(
SNoR_omega
x0
)
(proof)
Known
SNoS_E
SNoS_E
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
SNo_
x3
x1
)
⟶
x2
)
⟶
x2
Known
ordsucc_omega_ordinal
ordsucc_omega_ordinal
:
ordinal
(
ordsucc
omega
)
Known
SNoCut_ext
SNoCut_ext
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
(
SNoCut
x2
x3
)
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
(
SNoCut
x2
x3
)
x4
)
⟶
(
∀ x4 .
x4
∈
x2
⟶
SNoLt
x4
(
SNoCut
x0
x1
)
)
⟶
(
∀ x4 .
x4
∈
x3
⟶
SNoLt
(
SNoCut
x0
x1
)
x4
)
⟶
SNoCut
x0
x1
=
SNoCut
x2
x3
Known
SNoCutP_SNoL_SNoR
SNoCutP_SNoL_SNoR
:
∀ x0 .
SNo
x0
⟶
SNoCutP
(
SNoL
x0
)
(
SNoR
x0
)
Known
SNoCutP_SNoCut_L
SNoCutP_SNoCut_L
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 .
x2
∈
x0
⟶
SNoLt
x2
(
SNoCut
x0
x1
)
Known
SNoCutP_SNoCut_R
SNoCutP_SNoCut_R
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 .
x2
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x2
Known
TransSet_In_ordsucc_Subq
TransSet_In_ordsucc_Subq
:
∀ x0 x1 .
TransSet
x1
⟶
x0
∈
ordsucc
x1
⟶
x0
⊆
x1
Known
omega_TransSet
omega_TransSet
:
TransSet
omega
Known
SNoLev_uniq
SNoLev_uniq
:
∀ x0 x1 x2 .
ordinal
x1
⟶
ordinal
x2
⟶
SNo_
x1
x0
⟶
SNo_
x2
x0
⟶
x1
=
x2
Theorem
1df44..
SNoS_ordsucc_omega_SNoL_SNoR_omega
:
∀ x0 .
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
x0
=
SNoCut
(
SNoL_omega
x0
)
(
SNoR_omega
x0
)
(proof)
Theorem
11dba..
real_SNoL_SNoR_omega
:
∀ x0 .
x0
∈
87ab7..
⟶
x0
=
SNoCut
(
SNoL_omega
x0
)
(
SNoR_omega
x0
)
(proof)
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Theorem
95fe1..
real_ex_diad_Lt
:
∀ x0 .
x0
∈
87ab7..
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
SNoS_
omega
)
(
SNoLt
x2
x0
)
⟶
x1
)
⟶
x1
(proof)
Theorem
8b827..
real_ex_diad_Gt
:
∀ x0 .
x0
∈
87ab7..
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
SNoS_
omega
)
(
SNoLt
x0
x2
)
⟶
x1
)
⟶
x1
(proof)
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_Lt
mul_SNo_Lt
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLt
x2
x0
⟶
SNoLt
x3
x1
⟶
SNoLt
(
add_SNo
(
mul_SNo
x2
x1
)
(
mul_SNo
x0
x3
)
)
(
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
)
Theorem
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
(proof)
Theorem
mul_SNo_pos_neg
mul_SNo_pos_neg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
x1
0
⟶
SNoLt
(
mul_SNo
x0
x1
)
0
(proof)
Theorem
mul_SNo_neg_pos
mul_SNo_neg_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
0
⟶
SNoLt
0
x1
⟶
SNoLt
(
mul_SNo
x0
x1
)
0
(proof)
Theorem
mul_SNo_neg_neg
mul_SNo_neg_neg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
0
⟶
SNoLt
x1
0
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
(proof)
Theorem
mul_SNo_nonzero
mul_SNo_nonzero
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
(
x0
=
0
⟶
∀ x2 : ο .
x2
)
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
mul_SNo
x0
x1
=
0
⟶
∀ x2 : ο .
x2
(proof)
Known
minus_SNoCut_eq
minus_SNoCut_eq
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
minus_SNo
(
SNoCut
x0
x1
)
=
SNoCut
(
prim5
x1
minus_SNo
)
(
prim5
x0
minus_SNo
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
minus_SNo_Lt_contra2
minus_SNo_Lt_contra2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
(
minus_SNo
x1
)
⟶
SNoLt
x1
(
minus_SNo
x0
)
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Known
minus_SNo_Lt_contra1
minus_SNo_Lt_contra1
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
x1
⟶
SNoLt
(
minus_SNo
x1
)
x0
Theorem
minus_SNo_restr_SNo
minus_SNo_restr_SNo
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
binintersect
(
minus_SNo
x0
)
(
SNoElts_
x1
)
=
minus_SNo
(
binintersect
x0
(
SNoElts_
x1
)
)
(proof)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
SNoEq_sym_
SNoEq_sym_
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x1
Theorem
minus_SNo_exactly1of2
minus_SNo_exactly1of2
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
exactly1of2
(
x1
∈
x0
)
(
x1
∈
minus_SNo
x0
)
(proof)
Theorem
minus_SNo_In
minus_SNo_In
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
x1
∈
x0
⟶
nIn
x1
(
minus_SNo
x0
)
(proof)
Theorem
minus_SNo_nIn
minus_SNo_nIn
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
nIn
x1
x0
⟶
x1
∈
minus_SNo
x0
(proof)
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
add_SNo_minus_Lt1b
add_SNo_minus_Lt1b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
Known
add_SNo_minus_Lt1
add_SNo_minus_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
Theorem
54413..
real_minus_SNo
:
∀ x0 .
x0
∈
87ab7..
⟶
minus_SNo
x0
∈
87ab7..
(proof)