Search for blocks/addresses/...
Proofgold Asset
asset id
462f2aa6fd2167e3e385aa5c0295353204da95491050f68d2d15898e6b952af9
asset hash
eea12e4ca48b582d5ce5c9b32bcf38303fd29578c52311e33b39a4089c83f011
bday / block
20959
tx
c2e00..
preasset
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
16baa..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι →
ι →
ι →
ι → ο
.
(
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
∀ x7 : ο .
(
x1
x3
x4
x5
x6
⟶
x7
)
⟶
(
x2
x3
x4
x5
x6
⟶
x7
)
⟶
(
x1
x5
x6
x3
x4
⟶
x7
)
⟶
x7
)
⟶
(
∀ x3 x4 x5 x6 .
x0
x3
⟶
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x2
x3
x4
x5
x6
⟶
x2
x5
x6
x3
x4
)
⟶
∀ x3 .
x0
x3
⟶
∀ x4 .
x0
x4
⟶
∀ x5 .
x0
x5
⟶
∀ x6 .
x0
x6
⟶
∀ x7 .
x0
x7
⟶
∀ x8 .
x0
x8
⟶
∀ x9 .
x0
x9
⟶
∀ x10 .
x0
x10
⟶
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
not
(
x2
x3
x4
x5
x6
)
⟶
not
(
x2
x3
x4
x7
x8
)
⟶
not
(
x2
x3
x4
x9
x10
)
⟶
not
(
x2
x3
x4
x11
x12
)
⟶
not
(
x2
x3
x4
x13
x14
)
⟶
not
(
x2
x5
x6
x7
x8
)
⟶
not
(
x2
x5
x6
x9
x10
)
⟶
not
(
x2
x5
x6
x11
x12
)
⟶
not
(
x2
x5
x6
x13
x14
)
⟶
not
(
x2
x7
x8
x9
x10
)
⟶
not
(
x2
x7
x8
x11
x12
)
⟶
not
(
x2
x7
x8
x13
x14
)
⟶
not
(
x2
x9
x10
x11
x12
)
⟶
not
(
x2
x9
x10
x13
x14
)
⟶
not
(
x2
x11
x12
x13
x14
)
⟶
∀ x15 : ο .
(
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
∀ x25 .
x0
x25
⟶
∀ x26 .
x0
x26
⟶
∀ x27 .
x0
x27
⟶
x1
x16
x17
x18
x19
⟶
x1
x18
x19
x20
x21
⟶
x1
x20
x21
x22
x23
⟶
x1
x22
x23
x24
x25
⟶
x1
x24
x25
x26
x27
⟶
not
(
x2
x16
x17
x18
x19
)
⟶
not
(
x2
x16
x17
x20
x21
)
⟶
not
(
x2
x16
x17
x22
x23
)
⟶
not
(
x2
x16
x17
x24
x25
)
⟶
not
(
x2
x16
x17
x26
x27
)
⟶
not
(
x2
x18
x19
x20
x21
)
⟶
not
(
x2
x18
x19
x22
x23
)
⟶
not
(
x2
x18
x19
x24
x25
)
⟶
not
(
x2
x18
x19
x26
x27
)
⟶
not
(
x2
x20
x21
x22
x23
)
⟶
not
(
x2
x20
x21
x24
x25
)
⟶
not
(
x2
x20
x21
x26
x27
)
⟶
not
(
x2
x22
x23
x24
x25
)
⟶
not
(
x2
x22
x23
x26
x27
)
⟶
not
(
x2
x24
x25
x26
x27
)
⟶
(
∀ x28 : ο .
(
x16
=
x3
⟶
x17
=
x4
⟶
x28
)
⟶
(
x18
=
x3
⟶
x19
=
x4
⟶
x28
)
⟶
(
x20
=
x3
⟶
x21
=
x4
⟶
x28
)
⟶
(
x22
=
x3
⟶
x23
=
x4
⟶
x28
)
⟶
(
x24
=
x3
⟶
x25
=
x4
⟶
x28
)
⟶
(
x26
=
x3
⟶
x27
=
x4
⟶
x28
)
⟶
x28
)
⟶
x15
)
⟶
x15
Param
ap
ap
:
ι
→
ι
→
ι
Known
54331..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
∀ x8 x9 x10 :
ι → ι
.
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x8
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x8
x11
)
(
ap
(
x8
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x8
x11
)
x2
=
x3
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x9
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x9
x11
)
(
ap
(
x9
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x9
x11
)
x2
=
x4
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x10
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x10
x11
)
(
ap
(
x10
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x10
x11
)
x2
=
x5
)
⟶
∀ x11 :
ι →
ι →
ι →
ι → ο
.
(
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x11
x12
x13
x14
x15
⟶
x11
x12
(
ap
(
x8
x12
)
x13
)
x14
(
ap
(
x8
x14
)
x15
)
)
⟶
(
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x11
x12
x13
x14
x15
⟶
x11
x12
(
ap
(
x9
x12
)
x13
)
x14
(
ap
(
x9
x14
)
x15
)
)
⟶
(
∀ x12 x13 x14 x15 .
x0
x12
⟶
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x11
x12
x13
x14
x15
⟶
x11
x12
(
ap
(
x10
x12
)
x13
)
x14
(
ap
(
x10
x14
)
x15
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
not
(
x11
x12
x2
x13
x14
)
⟶
not
(
x11
x12
x2
x15
x16
)
⟶
not
(
x11
x12
x2
x17
x18
)
⟶
not
(
x11
x12
x2
x19
x20
)
⟶
not
(
x11
x12
x2
x21
x22
)
⟶
not
(
x11
x13
x14
x15
x16
)
⟶
not
(
x11
x13
x14
x17
x18
)
⟶
not
(
x11
x13
x14
x19
x20
)
⟶
not
(
x11
x13
x14
x21
x22
)
⟶
not
(
x11
x15
x16
x17
x18
)
⟶
not
(
x11
x15
x16
x19
x20
)
⟶
not
(
x11
x15
x16
x21
x22
)
⟶
not
(
x11
x17
x18
x19
x20
)
⟶
not
(
x11
x17
x18
x21
x22
)
⟶
not
(
x11
x19
x20
x21
x22
)
⟶
False
)
⟶
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x1
x23
⟶
not
(
x11
x12
x23
x13
x14
)
⟶
not
(
x11
x12
x23
x15
x16
)
⟶
not
(
x11
x12
x23
x17
x18
)
⟶
not
(
x11
x12
x23
x19
x20
)
⟶
not
(
x11
x12
x23
x21
x22
)
⟶
not
(
x11
x13
x14
x15
x16
)
⟶
not
(
x11
x13
x14
x17
x18
)
⟶
not
(
x11
x13
x14
x19
x20
)
⟶
not
(
x11
x13
x14
x21
x22
)
⟶
not
(
x11
x15
x16
x17
x18
)
⟶
not
(
x11
x15
x16
x19
x20
)
⟶
not
(
x11
x15
x16
x21
x22
)
⟶
not
(
x11
x17
x18
x19
x20
)
⟶
not
(
x11
x17
x18
x21
x22
)
⟶
not
(
x11
x19
x20
x21
x22
)
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
017d9..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 :
ι → ο
.
(
x1
x8
⟶
x9
x8
)
⟶
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
∀ x8 x9 x10 :
ι → ι
.
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x8
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x8
x11
)
(
ap
(
x8
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x8
x11
)
x2
=
x3
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x9
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x9
x11
)
(
ap
(
x9
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x9
x11
)
x2
=
x4
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x10
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x10
x11
)
(
ap
(
x10
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x10
x11
)
x2
=
x5
)
⟶
∀ x11 :
ι →
ι →
ι →
ι → ο
.
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x3
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x4
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x5
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x6
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x7
x13
x2
)
)
⟶
∀ x12 :
ι →
ι →
ι →
ι → ο
.
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
∀ x17 : ο .
(
x11
x13
x14
x15
x16
⟶
x17
)
⟶
(
x12
x13
x14
x15
x16
⟶
x17
)
⟶
(
x11
x15
x16
x13
x14
⟶
x17
)
⟶
x17
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x15
x16
x13
x14
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x8
x13
)
x14
)
x15
(
ap
(
x8
x15
)
x16
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x9
x13
)
x14
)
x15
(
ap
(
x9
x15
)
x16
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x10
x13
)
x14
)
x15
(
ap
(
x10
x15
)
x16
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
x11
x13
x2
x14
x15
⟶
x11
x14
x15
x16
x17
⟶
x11
x16
x17
x18
x19
⟶
x11
x18
x19
x20
x21
⟶
x11
x20
x21
x22
x23
⟶
not
(
x12
x13
x2
x14
x15
)
⟶
not
(
x12
x13
x2
x16
x17
)
⟶
not
(
x12
x13
x2
x18
x19
)
⟶
not
(
x12
x13
x2
x20
x21
)
⟶
not
(
x12
x13
x2
x22
x23
)
⟶
not
(
x12
x14
x15
x16
x17
)
⟶
not
(
x12
x14
x15
x18
x19
)
⟶
not
(
x12
x14
x15
x20
x21
)
⟶
not
(
x12
x14
x15
x22
x23
)
⟶
not
(
x12
x16
x17
x18
x19
)
⟶
not
(
x12
x16
x17
x20
x21
)
⟶
not
(
x12
x16
x17
x22
x23
)
⟶
not
(
x12
x18
x19
x20
x21
)
⟶
not
(
x12
x18
x19
x22
x23
)
⟶
not
(
x12
x20
x21
x22
x23
)
⟶
False
)
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
not
(
x12
x13
x2
x14
x15
)
⟶
not
(
x12
x13
x2
x16
x17
)
⟶
not
(
x12
x13
x2
x18
x19
)
⟶
not
(
x12
x13
x2
x20
x21
)
⟶
not
(
x12
x13
x2
x22
x23
)
⟶
not
(
x12
x14
x15
x16
x17
)
⟶
not
(
x12
x14
x15
x18
x19
)
⟶
not
(
x12
x14
x15
x20
x21
)
⟶
not
(
x12
x14
x15
x22
x23
)
⟶
not
(
x12
x16
x17
x18
x19
)
⟶
not
(
x12
x16
x17
x20
x21
)
⟶
not
(
x12
x16
x17
x22
x23
)
⟶
not
(
x12
x18
x19
x20
x21
)
⟶
not
(
x12
x18
x19
x22
x23
)
⟶
not
(
x12
x20
x21
x22
x23
)
⟶
False
(proof)
Theorem
58e84..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 :
ι → ο
.
(
x1
x8
⟶
x9
x8
)
⟶
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
∀ x8 x9 x10 :
ι → ι
.
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x8
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x8
x11
)
(
ap
(
x8
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x8
x11
)
x2
=
x3
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x9
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x9
x11
)
(
ap
(
x9
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x9
x11
)
x2
=
x4
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x10
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x10
x11
)
(
ap
(
x10
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x10
x11
)
x2
=
x5
)
⟶
∀ x11 :
ι →
ι →
ι →
ι → ο
.
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x3
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x4
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x5
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x6
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x7
x13
x2
)
)
⟶
∀ x12 :
ι →
ι →
ι →
ι → ο
.
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
∀ x17 : ο .
(
x11
x13
x14
x15
x16
⟶
x17
)
⟶
(
x12
x13
x14
x15
x16
⟶
x17
)
⟶
(
x11
x15
x16
x13
x14
⟶
x17
)
⟶
x17
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x15
x16
x13
x14
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x8
x13
)
x14
)
x15
(
ap
(
x8
x15
)
x16
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x9
x13
)
x14
)
x15
(
ap
(
x9
x15
)
x16
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x10
x13
)
x14
)
x15
(
ap
(
x10
x15
)
x16
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
x11
x13
x2
x14
x15
⟶
x11
x14
x15
x16
x17
⟶
x11
x16
x17
x18
x19
⟶
x11
x18
x19
x20
x21
⟶
x11
x20
x21
x22
x23
⟶
not
(
x12
x13
x2
x14
x15
)
⟶
not
(
x12
x13
x2
x16
x17
)
⟶
not
(
x12
x13
x2
x18
x19
)
⟶
not
(
x12
x13
x2
x20
x21
)
⟶
not
(
x12
x13
x2
x22
x23
)
⟶
not
(
x12
x14
x15
x16
x17
)
⟶
not
(
x12
x14
x15
x18
x19
)
⟶
not
(
x12
x14
x15
x20
x21
)
⟶
not
(
x12
x14
x15
x22
x23
)
⟶
not
(
x12
x16
x17
x18
x19
)
⟶
not
(
x12
x16
x17
x20
x21
)
⟶
not
(
x12
x16
x17
x22
x23
)
⟶
not
(
x12
x18
x19
x20
x21
)
⟶
not
(
x12
x18
x19
x22
x23
)
⟶
not
(
x12
x20
x21
x22
x23
)
⟶
False
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
not
(
x1
x14
)
⟶
not
(
x1
x16
)
⟶
not
(
x1
x18
)
⟶
not
(
x1
x20
)
⟶
not
(
x1
x22
)
⟶
not
(
x1
x24
)
⟶
x11
x13
x14
x15
x16
⟶
x11
x15
x16
x17
x18
⟶
x11
x17
x18
x19
x20
⟶
x11
x19
x20
x21
x22
⟶
x11
x21
x22
x23
x24
⟶
not
(
x12
x13
x14
x15
x16
)
⟶
not
(
x12
x13
x14
x17
x18
)
⟶
not
(
x12
x13
x14
x19
x20
)
⟶
not
(
x12
x13
x14
x21
x22
)
⟶
not
(
x12
x13
x14
x23
x24
)
⟶
not
(
x12
x15
x16
x17
x18
)
⟶
not
(
x12
x15
x16
x19
x20
)
⟶
not
(
x12
x15
x16
x21
x22
)
⟶
not
(
x12
x15
x16
x23
x24
)
⟶
not
(
x12
x17
x18
x19
x20
)
⟶
not
(
x12
x17
x18
x21
x22
)
⟶
not
(
x12
x17
x18
x23
x24
)
⟶
not
(
x12
x19
x20
x21
x22
)
⟶
not
(
x12
x19
x20
x23
x24
)
⟶
not
(
x12
x21
x22
x23
x24
)
⟶
False
)
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
x11
x13
x14
x15
x16
⟶
x11
x15
x16
x17
x18
⟶
x11
x17
x18
x19
x20
⟶
x11
x19
x20
x21
x22
⟶
x11
x21
x22
x23
x24
⟶
not
(
x12
x13
x14
x15
x16
)
⟶
not
(
x12
x13
x14
x17
x18
)
⟶
not
(
x12
x13
x14
x19
x20
)
⟶
not
(
x12
x13
x14
x21
x22
)
⟶
not
(
x12
x13
x14
x23
x24
)
⟶
not
(
x12
x15
x16
x17
x18
)
⟶
not
(
x12
x15
x16
x19
x20
)
⟶
not
(
x12
x15
x16
x21
x22
)
⟶
not
(
x12
x15
x16
x23
x24
)
⟶
not
(
x12
x17
x18
x19
x20
)
⟶
not
(
x12
x17
x18
x21
x22
)
⟶
not
(
x12
x17
x18
x23
x24
)
⟶
not
(
x12
x19
x20
x21
x22
)
⟶
not
(
x12
x19
x20
x23
x24
)
⟶
not
(
x12
x21
x22
x23
x24
)
⟶
False
(proof)
Theorem
5b8ac..
:
∀ x0 x1 :
ι → ο
.
∀ x2 x3 x4 x5 x6 x7 .
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
x8
x6
⟶
x8
x7
⟶
∀ x9 .
x0
x9
⟶
x8
x9
)
⟶
(
∀ x8 :
ι → ο
.
x8
x2
⟶
x8
x3
⟶
x8
x4
⟶
x8
x5
⟶
∀ x9 .
x1
x9
⟶
x8
x9
)
⟶
x0
x2
⟶
(
∀ x8 .
x0
x8
⟶
∀ x9 :
ι → ο
.
(
x1
x8
⟶
x9
x8
)
⟶
x9
x6
⟶
x9
x7
⟶
x9
x8
)
⟶
∀ x8 x9 x10 :
ι → ι
.
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x8
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x8
x11
)
(
ap
(
x8
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x8
x11
)
x2
=
x3
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x9
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x9
x11
)
(
ap
(
x9
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x9
x11
)
x2
=
x4
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
x0
(
ap
(
x10
x11
)
x12
)
)
⟶
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x0
x12
⟶
ap
(
x10
x11
)
(
ap
(
x10
x11
)
x12
)
=
x12
)
⟶
(
∀ x11 .
x0
x11
⟶
ap
(
x10
x11
)
x2
=
x5
)
⟶
∀ x11 :
ι →
ι →
ι →
ι → ο
.
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x3
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x4
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x5
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x6
x13
x2
)
)
⟶
(
∀ x12 .
x0
x12
⟶
∀ x13 .
x0
x13
⟶
not
(
x11
x12
x7
x13
x2
)
)
⟶
∀ x12 :
ι →
ι →
ι →
ι → ο
.
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
∀ x17 : ο .
(
x11
x13
x14
x15
x16
⟶
x17
)
⟶
(
x12
x13
x14
x15
x16
⟶
x17
)
⟶
(
x11
x15
x16
x13
x14
⟶
x17
)
⟶
x17
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x15
x16
x13
x14
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x8
x13
)
x14
)
x15
(
ap
(
x8
x15
)
x16
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x9
x13
)
x14
)
x15
(
ap
(
x9
x15
)
x16
)
)
⟶
(
∀ x13 x14 x15 x16 .
x0
x13
⟶
x0
x14
⟶
x0
x15
⟶
x0
x16
⟶
x12
x13
x14
x15
x16
⟶
x12
x13
(
ap
(
x10
x13
)
x14
)
x15
(
ap
(
x10
x15
)
x16
)
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
x11
x13
x2
x14
x15
⟶
x11
x14
x15
x16
x17
⟶
x11
x16
x17
x18
x19
⟶
x11
x18
x19
x20
x21
⟶
x11
x20
x21
x22
x23
⟶
not
(
x12
x13
x2
x14
x15
)
⟶
not
(
x12
x13
x2
x16
x17
)
⟶
not
(
x12
x13
x2
x18
x19
)
⟶
not
(
x12
x13
x2
x20
x21
)
⟶
not
(
x12
x13
x2
x22
x23
)
⟶
not
(
x12
x14
x15
x16
x17
)
⟶
not
(
x12
x14
x15
x18
x19
)
⟶
not
(
x12
x14
x15
x20
x21
)
⟶
not
(
x12
x14
x15
x22
x23
)
⟶
not
(
x12
x16
x17
x18
x19
)
⟶
not
(
x12
x16
x17
x20
x21
)
⟶
not
(
x12
x16
x17
x22
x23
)
⟶
not
(
x12
x18
x19
x20
x21
)
⟶
not
(
x12
x18
x19
x22
x23
)
⟶
not
(
x12
x20
x21
x22
x23
)
⟶
False
)
⟶
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
not
(
x1
x14
)
⟶
not
(
x1
x16
)
⟶
not
(
x1
x18
)
⟶
not
(
x1
x20
)
⟶
not
(
x1
x22
)
⟶
not
(
x1
x24
)
⟶
x11
x13
x14
x15
x16
⟶
x11
x15
x16
x17
x18
⟶
x11
x17
x18
x19
x20
⟶
x11
x19
x20
x21
x22
⟶
x11
x21
x22
x23
x24
⟶
not
(
x12
x13
x14
x15
x16
)
⟶
not
(
x12
x13
x14
x17
x18
)
⟶
not
(
x12
x13
x14
x19
x20
)
⟶
not
(
x12
x13
x14
x21
x22
)
⟶
not
(
x12
x13
x14
x23
x24
)
⟶
not
(
x12
x15
x16
x17
x18
)
⟶
not
(
x12
x15
x16
x19
x20
)
⟶
not
(
x12
x15
x16
x21
x22
)
⟶
not
(
x12
x15
x16
x23
x24
)
⟶
not
(
x12
x17
x18
x19
x20
)
⟶
not
(
x12
x17
x18
x21
x22
)
⟶
not
(
x12
x17
x18
x23
x24
)
⟶
not
(
x12
x19
x20
x21
x22
)
⟶
not
(
x12
x19
x20
x23
x24
)
⟶
not
(
x12
x21
x22
x23
x24
)
⟶
False
)
⟶
∀ x13 .
x0
x13
⟶
∀ x14 .
x0
x14
⟶
∀ x15 .
x0
x15
⟶
∀ x16 .
x0
x16
⟶
∀ x17 .
x0
x17
⟶
∀ x18 .
x0
x18
⟶
∀ x19 .
x0
x19
⟶
∀ x20 .
x0
x20
⟶
∀ x21 .
x0
x21
⟶
∀ x22 .
x0
x22
⟶
∀ x23 .
x0
x23
⟶
∀ x24 .
x0
x24
⟶
not
(
x12
x13
x14
x15
x16
)
⟶
not
(
x12
x13
x14
x17
x18
)
⟶
not
(
x12
x13
x14
x19
x20
)
⟶
not
(
x12
x13
x14
x21
x22
)
⟶
not
(
x12
x13
x14
x23
x24
)
⟶
not
(
x12
x15
x16
x17
x18
)
⟶
not
(
x12
x15
x16
x19
x20
)
⟶
not
(
x12
x15
x16
x21
x22
)
⟶
not
(
x12
x15
x16
x23
x24
)
⟶
not
(
x12
x17
x18
x19
x20
)
⟶
not
(
x12
x17
x18
x21
x22
)
⟶
not
(
x12
x17
x18
x23
x24
)
⟶
not
(
x12
x19
x20
x21
x22
)
⟶
not
(
x12
x19
x20
x23
x24
)
⟶
not
(
x12
x21
x22
x23
x24
)
⟶
False
(proof)