Search for blocks/addresses/...

Proofgold Asset

asset id
462f2aa6fd2167e3e385aa5c0295353204da95491050f68d2d15898e6b952af9
asset hash
eea12e4ca48b582d5ce5c9b32bcf38303fd29578c52311e33b39a4089c83f011
bday / block
20959
tx
c2e00..
preasset
doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known 16baa.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι → ι → ο . (∀ x3 x4 x5 x6 . x0 x3x0 x4x0 x5x0 x6∀ x7 : ο . (x1 x3 x4 x5 x6x7)(x2 x3 x4 x5 x6x7)(x1 x5 x6 x3 x4x7)x7)(∀ x3 x4 x5 x6 . x0 x3x0 x4x0 x5x0 x6x2 x3 x4 x5 x6x2 x5 x6 x3 x4)∀ x3 . x0 x3∀ x4 . x0 x4∀ x5 . x0 x5∀ x6 . x0 x6∀ x7 . x0 x7∀ x8 . x0 x8∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14not (x2 x3 x4 x5 x6)not (x2 x3 x4 x7 x8)not (x2 x3 x4 x9 x10)not (x2 x3 x4 x11 x12)not (x2 x3 x4 x13 x14)not (x2 x5 x6 x7 x8)not (x2 x5 x6 x9 x10)not (x2 x5 x6 x11 x12)not (x2 x5 x6 x13 x14)not (x2 x7 x8 x9 x10)not (x2 x7 x8 x11 x12)not (x2 x7 x8 x13 x14)not (x2 x9 x10 x11 x12)not (x2 x9 x10 x13 x14)not (x2 x11 x12 x13 x14)∀ x15 : ο . (∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24∀ x25 . x0 x25∀ x26 . x0 x26∀ x27 . x0 x27x1 x16 x17 x18 x19x1 x18 x19 x20 x21x1 x20 x21 x22 x23x1 x22 x23 x24 x25x1 x24 x25 x26 x27not (x2 x16 x17 x18 x19)not (x2 x16 x17 x20 x21)not (x2 x16 x17 x22 x23)not (x2 x16 x17 x24 x25)not (x2 x16 x17 x26 x27)not (x2 x18 x19 x20 x21)not (x2 x18 x19 x22 x23)not (x2 x18 x19 x24 x25)not (x2 x18 x19 x26 x27)not (x2 x20 x21 x22 x23)not (x2 x20 x21 x24 x25)not (x2 x20 x21 x26 x27)not (x2 x22 x23 x24 x25)not (x2 x22 x23 x26 x27)not (x2 x24 x25 x26 x27)(∀ x28 : ο . (x16 = x3x17 = x4x28)(x18 = x3x19 = x4x28)(x20 = x3x21 = x4x28)(x22 = x3x23 = x4x28)(x24 = x3x25 = x4x28)(x26 = x3x27 = x4x28)x28)x15)x15
Param apap : ιιι
Known 54331.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2∀ x8 x9 x10 : ι → ι . (∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x8 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x8 x11) (ap (x8 x11) x12) = x12)(∀ x11 . x0 x11ap (x8 x11) x2 = x3)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x9 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x9 x11) (ap (x9 x11) x12) = x12)(∀ x11 . x0 x11ap (x9 x11) x2 = x4)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x10 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x10 x11) (ap (x10 x11) x12) = x12)(∀ x11 . x0 x11ap (x10 x11) x2 = x5)∀ x11 : ι → ι → ι → ι → ο . (∀ x12 x13 x14 x15 . x0 x12x0 x13x0 x14x0 x15x11 x12 x13 x14 x15x11 x12 (ap (x8 x12) x13) x14 (ap (x8 x14) x15))(∀ x12 x13 x14 x15 . x0 x12x0 x13x0 x14x0 x15x11 x12 x13 x14 x15x11 x12 (ap (x9 x12) x13) x14 (ap (x9 x14) x15))(∀ x12 x13 x14 x15 . x0 x12x0 x13x0 x14x0 x15x11 x12 x13 x14 x15x11 x12 (ap (x10 x12) x13) x14 (ap (x10 x14) x15))(∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22not (x11 x12 x2 x13 x14)not (x11 x12 x2 x15 x16)not (x11 x12 x2 x17 x18)not (x11 x12 x2 x19 x20)not (x11 x12 x2 x21 x22)not (x11 x13 x14 x15 x16)not (x11 x13 x14 x17 x18)not (x11 x13 x14 x19 x20)not (x11 x13 x14 x21 x22)not (x11 x15 x16 x17 x18)not (x11 x15 x16 x19 x20)not (x11 x15 x16 x21 x22)not (x11 x17 x18 x19 x20)not (x11 x17 x18 x21 x22)not (x11 x19 x20 x21 x22)False)∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x1 x23not (x11 x12 x23 x13 x14)not (x11 x12 x23 x15 x16)not (x11 x12 x23 x17 x18)not (x11 x12 x23 x19 x20)not (x11 x12 x23 x21 x22)not (x11 x13 x14 x15 x16)not (x11 x13 x14 x17 x18)not (x11 x13 x14 x19 x20)not (x11 x13 x14 x21 x22)not (x11 x15 x16 x17 x18)not (x11 x15 x16 x19 x20)not (x11 x15 x16 x21 x22)not (x11 x17 x18 x19 x20)not (x11 x17 x18 x21 x22)not (x11 x19 x20 x21 x22)False
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 017d9.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2(∀ x8 . x0 x8∀ x9 : ι → ο . (x1 x8x9 x8)x9 x6x9 x7x9 x8)∀ x8 x9 x10 : ι → ι . (∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x8 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x8 x11) (ap (x8 x11) x12) = x12)(∀ x11 . x0 x11ap (x8 x11) x2 = x3)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x9 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x9 x11) (ap (x9 x11) x12) = x12)(∀ x11 . x0 x11ap (x9 x11) x2 = x4)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x10 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x10 x11) (ap (x10 x11) x12) = x12)(∀ x11 . x0 x11ap (x10 x11) x2 = x5)∀ x11 : ι → ι → ι → ι → ο . (∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x3 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x4 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x5 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x2))∀ x12 : ι → ι → ι → ι → ο . (∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16∀ x17 : ο . (x11 x13 x14 x15 x16x17)(x12 x13 x14 x15 x16x17)(x11 x15 x16 x13 x14x17)x17)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x15 x16 x13 x14)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x8 x13) x14) x15 (ap (x8 x15) x16))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x9 x13) x14) x15 (ap (x9 x15) x16))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x10 x13) x14) x15 (ap (x10 x15) x16))(∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23x11 x13 x2 x14 x15x11 x14 x15 x16 x17x11 x16 x17 x18 x19x11 x18 x19 x20 x21x11 x20 x21 x22 x23not (x12 x13 x2 x14 x15)not (x12 x13 x2 x16 x17)not (x12 x13 x2 x18 x19)not (x12 x13 x2 x20 x21)not (x12 x13 x2 x22 x23)not (x12 x14 x15 x16 x17)not (x12 x14 x15 x18 x19)not (x12 x14 x15 x20 x21)not (x12 x14 x15 x22 x23)not (x12 x16 x17 x18 x19)not (x12 x16 x17 x20 x21)not (x12 x16 x17 x22 x23)not (x12 x18 x19 x20 x21)not (x12 x18 x19 x22 x23)not (x12 x20 x21 x22 x23)False)∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23not (x12 x13 x2 x14 x15)not (x12 x13 x2 x16 x17)not (x12 x13 x2 x18 x19)not (x12 x13 x2 x20 x21)not (x12 x13 x2 x22 x23)not (x12 x14 x15 x16 x17)not (x12 x14 x15 x18 x19)not (x12 x14 x15 x20 x21)not (x12 x14 x15 x22 x23)not (x12 x16 x17 x18 x19)not (x12 x16 x17 x20 x21)not (x12 x16 x17 x22 x23)not (x12 x18 x19 x20 x21)not (x12 x18 x19 x22 x23)not (x12 x20 x21 x22 x23)False (proof)
Theorem 58e84.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2(∀ x8 . x0 x8∀ x9 : ι → ο . (x1 x8x9 x8)x9 x6x9 x7x9 x8)∀ x8 x9 x10 : ι → ι . (∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x8 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x8 x11) (ap (x8 x11) x12) = x12)(∀ x11 . x0 x11ap (x8 x11) x2 = x3)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x9 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x9 x11) (ap (x9 x11) x12) = x12)(∀ x11 . x0 x11ap (x9 x11) x2 = x4)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x10 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x10 x11) (ap (x10 x11) x12) = x12)(∀ x11 . x0 x11ap (x10 x11) x2 = x5)∀ x11 : ι → ι → ι → ι → ο . (∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x3 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x4 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x5 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x2))∀ x12 : ι → ι → ι → ι → ο . (∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16∀ x17 : ο . (x11 x13 x14 x15 x16x17)(x12 x13 x14 x15 x16x17)(x11 x15 x16 x13 x14x17)x17)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x15 x16 x13 x14)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x8 x13) x14) x15 (ap (x8 x15) x16))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x9 x13) x14) x15 (ap (x9 x15) x16))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x10 x13) x14) x15 (ap (x10 x15) x16))(∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23x11 x13 x2 x14 x15x11 x14 x15 x16 x17x11 x16 x17 x18 x19x11 x18 x19 x20 x21x11 x20 x21 x22 x23not (x12 x13 x2 x14 x15)not (x12 x13 x2 x16 x17)not (x12 x13 x2 x18 x19)not (x12 x13 x2 x20 x21)not (x12 x13 x2 x22 x23)not (x12 x14 x15 x16 x17)not (x12 x14 x15 x18 x19)not (x12 x14 x15 x20 x21)not (x12 x14 x15 x22 x23)not (x12 x16 x17 x18 x19)not (x12 x16 x17 x20 x21)not (x12 x16 x17 x22 x23)not (x12 x18 x19 x20 x21)not (x12 x18 x19 x22 x23)not (x12 x20 x21 x22 x23)False)(∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24not (x1 x14)not (x1 x16)not (x1 x18)not (x1 x20)not (x1 x22)not (x1 x24)x11 x13 x14 x15 x16x11 x15 x16 x17 x18x11 x17 x18 x19 x20x11 x19 x20 x21 x22x11 x21 x22 x23 x24not (x12 x13 x14 x15 x16)not (x12 x13 x14 x17 x18)not (x12 x13 x14 x19 x20)not (x12 x13 x14 x21 x22)not (x12 x13 x14 x23 x24)not (x12 x15 x16 x17 x18)not (x12 x15 x16 x19 x20)not (x12 x15 x16 x21 x22)not (x12 x15 x16 x23 x24)not (x12 x17 x18 x19 x20)not (x12 x17 x18 x21 x22)not (x12 x17 x18 x23 x24)not (x12 x19 x20 x21 x22)not (x12 x19 x20 x23 x24)not (x12 x21 x22 x23 x24)False)∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24x11 x13 x14 x15 x16x11 x15 x16 x17 x18x11 x17 x18 x19 x20x11 x19 x20 x21 x22x11 x21 x22 x23 x24not (x12 x13 x14 x15 x16)not (x12 x13 x14 x17 x18)not (x12 x13 x14 x19 x20)not (x12 x13 x14 x21 x22)not (x12 x13 x14 x23 x24)not (x12 x15 x16 x17 x18)not (x12 x15 x16 x19 x20)not (x12 x15 x16 x21 x22)not (x12 x15 x16 x23 x24)not (x12 x17 x18 x19 x20)not (x12 x17 x18 x21 x22)not (x12 x17 x18 x23 x24)not (x12 x19 x20 x21 x22)not (x12 x19 x20 x23 x24)not (x12 x21 x22 x23 x24)False (proof)
Theorem 5b8ac.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9)(∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2(∀ x8 . x0 x8∀ x9 : ι → ο . (x1 x8x9 x8)x9 x6x9 x7x9 x8)∀ x8 x9 x10 : ι → ι . (∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x8 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x8 x11) (ap (x8 x11) x12) = x12)(∀ x11 . x0 x11ap (x8 x11) x2 = x3)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x9 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x9 x11) (ap (x9 x11) x12) = x12)(∀ x11 . x0 x11ap (x9 x11) x2 = x4)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x10 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x10 x11) (ap (x10 x11) x12) = x12)(∀ x11 . x0 x11ap (x10 x11) x2 = x5)∀ x11 : ι → ι → ι → ι → ο . (∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x3 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x4 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x5 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x6 x13 x2))(∀ x12 . x0 x12∀ x13 . x0 x13not (x11 x12 x7 x13 x2))∀ x12 : ι → ι → ι → ι → ο . (∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16∀ x17 : ο . (x11 x13 x14 x15 x16x17)(x12 x13 x14 x15 x16x17)(x11 x15 x16 x13 x14x17)x17)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x15 x16 x13 x14)(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x8 x13) x14) x15 (ap (x8 x15) x16))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x9 x13) x14) x15 (ap (x9 x15) x16))(∀ x13 x14 x15 x16 . x0 x13x0 x14x0 x15x0 x16x12 x13 x14 x15 x16x12 x13 (ap (x10 x13) x14) x15 (ap (x10 x15) x16))(∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23x11 x13 x2 x14 x15x11 x14 x15 x16 x17x11 x16 x17 x18 x19x11 x18 x19 x20 x21x11 x20 x21 x22 x23not (x12 x13 x2 x14 x15)not (x12 x13 x2 x16 x17)not (x12 x13 x2 x18 x19)not (x12 x13 x2 x20 x21)not (x12 x13 x2 x22 x23)not (x12 x14 x15 x16 x17)not (x12 x14 x15 x18 x19)not (x12 x14 x15 x20 x21)not (x12 x14 x15 x22 x23)not (x12 x16 x17 x18 x19)not (x12 x16 x17 x20 x21)not (x12 x16 x17 x22 x23)not (x12 x18 x19 x20 x21)not (x12 x18 x19 x22 x23)not (x12 x20 x21 x22 x23)False)(∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24not (x1 x14)not (x1 x16)not (x1 x18)not (x1 x20)not (x1 x22)not (x1 x24)x11 x13 x14 x15 x16x11 x15 x16 x17 x18x11 x17 x18 x19 x20x11 x19 x20 x21 x22x11 x21 x22 x23 x24not (x12 x13 x14 x15 x16)not (x12 x13 x14 x17 x18)not (x12 x13 x14 x19 x20)not (x12 x13 x14 x21 x22)not (x12 x13 x14 x23 x24)not (x12 x15 x16 x17 x18)not (x12 x15 x16 x19 x20)not (x12 x15 x16 x21 x22)not (x12 x15 x16 x23 x24)not (x12 x17 x18 x19 x20)not (x12 x17 x18 x21 x22)not (x12 x17 x18 x23 x24)not (x12 x19 x20 x21 x22)not (x12 x19 x20 x23 x24)not (x12 x21 x22 x23 x24)False)∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x0 x23∀ x24 . x0 x24not (x12 x13 x14 x15 x16)not (x12 x13 x14 x17 x18)not (x12 x13 x14 x19 x20)not (x12 x13 x14 x21 x22)not (x12 x13 x14 x23 x24)not (x12 x15 x16 x17 x18)not (x12 x15 x16 x19 x20)not (x12 x15 x16 x21 x22)not (x12 x15 x16 x23 x24)not (x12 x17 x18 x19 x20)not (x12 x17 x18 x21 x22)not (x12 x17 x18 x23 x24)not (x12 x19 x20 x21 x22)not (x12 x19 x20 x23 x24)not (x12 x21 x22 x23 x24)False (proof)