Search for blocks/addresses/...
Proofgold Asset
asset id
3c451955daaf6f1c00d9e3d317ee8ea7569a94d92e5b79e6e0ca16350191a05c
asset hash
464a0412871b22cd82d120fc3e10688945860fccec63af136c1f0504a3846749
bday / block
38746
tx
c11e6..
preasset
doc published by
PrCmT..
Known
5d9b3..
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
∀ x14 : ο .
(
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
not
(
x5
(
x1
(
x2
(
x8
x15
x16
x17
)
x4
)
x17
)
x18
=
x4
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x1
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x3
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x2
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x5
x19
x20
=
x2
(
x1
x20
x19
)
(
x1
x19
x20
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x5
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x6
x19
x20
x21
=
x2
(
x1
x19
(
x1
x20
x21
)
)
(
x1
(
x1
x19
x20
)
x21
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
In
(
x6
x19
x20
x21
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x7
x19
x20
=
x2
x19
(
x1
x20
x19
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x7
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x19
x20
x21
=
x2
(
x1
x20
x19
)
(
x1
x20
(
x1
x19
x21
)
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
In
(
x8
x19
x20
x21
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x19
x20
x21
=
x3
(
x1
(
x1
x21
x19
)
x20
)
(
x1
x19
x20
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
In
(
x9
x19
x20
x21
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x10
x19
x20
=
x1
x19
(
x1
x20
(
x2
x19
x4
)
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x10
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x12
x19
x20
=
x1
(
x2
x19
x20
)
(
x2
(
x2
x19
x4
)
x4
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x12
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x11
x19
x20
=
x1
(
x1
(
x3
x4
x19
)
x20
)
x19
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x11
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x13
x19
x20
=
x1
(
x3
x4
(
x3
x4
x19
)
)
(
x3
x20
x19
)
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
In
(
x13
x19
x20
)
x0
)
⟶
(
∀ x19 .
In
x19
x0
⟶
x1
x4
x19
=
x19
)
⟶
(
∀ x19 .
In
x19
x0
⟶
x1
x19
x4
=
x19
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x2
x19
(
x1
x19
x20
)
=
x20
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x1
x19
(
x2
x19
x20
)
=
x20
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x3
(
x1
x19
x20
)
x20
=
x19
)
⟶
(
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x1
(
x3
x19
x20
)
x20
=
x19
)
⟶
x14
)
⟶
x14
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
a6a76..
conj_AIM1_TMUXVPvTS7CCg3q7bNHTzjEiduepbRvBNKT
:
∀ x0 .
∀ x1 x2 x3 :
ι →
ι → ι
.
∀ x4 .
∀ x5 :
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι → ι
.
∀ x8 x9 :
ι →
ι →
ι → ι
.
∀ x10 x11 x12 x13 :
ι →
ι → ι
.
Loop_with_defs_cex1
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
In
x4
x0
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x9
x14
x15
(
x10
x14
(
x7
x15
(
x9
x14
x15
(
x10
x14
(
x7
x15
(
x9
x14
x15
(
x10
x14
(
x7
x15
(
x9
x14
x15
(
x10
x14
(
x7
x15
(
x9
x14
x15
(
x10
x14
(
x7
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
(
x8
x14
x15
(
x10
x14
(
x12
x15
x16
)
)
)
)
)
)
)
)
=
x16
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
x17
)
)
=
x7
x15
(
x12
x16
(
x12
x14
x17
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x9
x14
x15
(
x12
x16
(
x13
x17
x18
)
)
=
x12
x16
(
x13
x17
(
x9
x14
x15
x18
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x12
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x12
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x10
x15
(
x13
x16
(
x7
x17
x18
)
)
)
=
x13
x16
(
x7
x17
(
x12
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x12
x14
(
x7
x15
(
x12
x16
(
x7
x17
x18
)
)
)
=
x12
x16
(
x7
x17
(
x12
x14
(
x7
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x12
x15
(
x12
x16
(
x12
x17
x18
)
)
)
=
x12
x16
(
x12
x17
(
x10
x14
(
x12
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
x10
x14
(
x10
x15
(
x12
x16
(
x10
x17
x18
)
)
)
=
x12
x16
(
x10
x17
(
x10
x14
(
x10
x15
x18
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x7
x16
(
x7
x17
(
x12
x18
x19
)
)
)
=
x7
x17
(
x12
x18
(
x8
x14
x15
(
x7
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x10
x18
x19
)
)
)
=
x12
x17
(
x10
x18
(
x8
x14
x15
(
x10
x16
x19
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x7
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x7
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
x8
x14
x15
(
x10
x16
(
x9
x17
x18
(
x7
x19
x20
)
)
)
=
x9
x17
x18
(
x7
x19
(
x8
x14
x15
(
x10
x16
x20
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x10
x16
(
x7
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x9
x14
x15
(
x10
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x8
x18
x19
(
x10
x20
x21
)
)
)
)
=
x8
x18
x19
(
x10
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x10
x16
(
x12
x17
(
x9
x18
x19
(
x7
x20
x21
)
)
)
)
=
x9
x18
x19
(
x7
x20
(
x8
x14
x15
(
x10
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x13
x20
x21
)
)
)
)
=
x8
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x7
x17
(
x8
x18
x19
(
x12
x20
x21
)
)
)
)
=
x8
x18
x19
(
x12
x20
(
x8
x14
x15
(
x12
x16
(
x7
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x9
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x9
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x10
x17
(
x8
x18
x19
(
x7
x20
x21
)
)
)
)
=
x8
x18
x19
(
x7
x20
(
x8
x14
x15
(
x12
x16
(
x10
x17
x21
)
)
)
)
)
⟶
(
∀ x14 .
In
x14
x0
⟶
∀ x15 .
In
x15
x0
⟶
∀ x16 .
In
x16
x0
⟶
∀ x17 .
In
x17
x0
⟶
∀ x18 .
In
x18
x0
⟶
∀ x19 .
In
x19
x0
⟶
∀ x20 .
In
x20
x0
⟶
∀ x21 .
In
x21
x0
⟶
x8
x14
x15
(
x12
x16
(
x12
x17
(
x9
x18
x19
(
x13
x20
x21
)
)
)
)
=
x9
x18
x19
(
x13
x20
(
x8
x14
x15
(
x12
x16
(
x12
x17
x21
)
)
)
)
)
⟶
False
(proof)