Search for blocks/addresses/...
Proofgold Asset
asset id
079a56b1a21dbaeb497b6cba19dd7c036efd5134fe0e2510657ad424385eda49
asset hash
47dbb4a1fb34a24025359d1b9e424c32397e327ad6fcd22923c14832c2e829f8
bday / block
4897
tx
ca657..
preasset
doc published by
Pr6Pc..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_ind
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
x2
∈
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
258d1..
:
∀ x0 x1 x2 .
x0
∈
x1
⟶
x1
∈
x2
⟶
nIn
x2
x0
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
Eps_i_ax
Eps_i_ax
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
prim0
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
Eps_i_set_R
Eps_i_set_R
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
and
(
prim0
(
λ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
)
∈
x0
)
(
x1
(
prim0
(
λ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
)
)
)
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
If_i
If_i
:=
λ x0 : ο .
λ x1 x2 .
prim0
(
λ x3 .
or
(
and
x0
(
x3
=
x1
)
)
(
and
(
not
x0
)
(
x3
=
x2
)
)
)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
If_i_correct
If_i_correct
:
∀ x0 : ο .
∀ x1 x2 .
or
(
and
x0
(
If_i
x0
x1
x2
=
x1
)
)
(
and
(
not
x0
)
(
If_i
x0
x1
x2
=
x2
)
)
Known
andEL
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Known
andER
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_or
If_i_or
:
∀ x0 : ο .
∀ x1 x2 .
or
(
If_i
x0
x1
x2
=
x1
)
(
If_i
x0
x1
x2
=
x2
)
Known
If_i_eta
If_i_eta
:
∀ x0 : ο .
∀ x1 .
If_i
x0
x1
x1
=
x1
Theorem
exandE_ii
exandE_ii
:
∀ x0 x1 :
(
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iii
exandE_iii
:
∀ x0 x1 :
(
ι →
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iiii
exandE_iiii
:
∀ x0 x1 :
(
ι →
ι →
ι → ι
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iio
exandE_iio
:
∀ x0 x1 :
(
ι →
ι → ο
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ο
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ο
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
exandE_iiio
exandE_iiio
:
∀ x0 x1 :
(
ι →
ι →
ι → ο
)
→ ο
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ο
.
and
(
x0
x3
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ο
.
x0
x3
⟶
x1
x3
⟶
x2
)
⟶
x2
(proof)
Definition
Descr_ii
Descr_ii
:=
λ x0 :
(
ι → ι
)
→ ο
.
λ x1 .
prim0
(
λ x2 .
∀ x3 :
ι → ι
.
x0
x3
⟶
x3
x1
=
x2
)
Theorem
Descr_ii_prop
Descr_ii_prop
:
∀ x0 :
(
ι → ι
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ι
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ι
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_ii
x0
)
(proof)
Definition
Descr_iii
Descr_iii
:=
λ x0 :
(
ι →
ι → ι
)
→ ο
.
λ x1 x2 .
prim0
(
λ x3 .
∀ x4 :
ι →
ι → ι
.
x0
x4
⟶
x4
x1
x2
=
x3
)
Theorem
Descr_iii_prop
Descr_iii_prop
:
∀ x0 :
(
ι →
ι → ι
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ι
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι →
ι → ι
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_iii
x0
)
(proof)
Definition
Descr_iio
Descr_iio
:=
λ x0 :
(
ι →
ι → ο
)
→ ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
x0
x3
⟶
x3
x1
x2
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Theorem
Descr_iio_prop
Descr_iio_prop
:
∀ x0 :
(
ι →
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι →
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι →
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_iio
x0
)
(proof)
Definition
Descr_Vo1
Descr_Vo1
:=
λ x0 :
(
ι → ο
)
→ ο
.
λ x1 .
∀ x2 :
ι → ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo1_prop
Descr_Vo1_prop
:
∀ x0 :
(
ι → ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
ι → ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
ι → ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo1
x0
)
(proof)
Definition
Descr_Vo2
Descr_Vo2
:=
λ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
λ x1 :
ι → ο
.
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x2
x1
Theorem
Descr_Vo2_prop
Descr_Vo2_prop
:
∀ x0 :
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x1 : ο .
(
∀ x2 :
(
ι → ο
)
→ ο
.
x0
x2
⟶
x1
)
⟶
x1
)
⟶
(
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
x1
⟶
x0
x2
⟶
x1
=
x2
)
⟶
x0
(
Descr_Vo2
x0
)
(proof)
Definition
If_ii
If_ii
:=
λ x0 : ο .
λ x1 x2 :
ι → ι
.
λ x3 .
If_i
x0
(
x1
x3
)
(
x2
x3
)
Theorem
If_ii_1
If_ii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
x0
⟶
If_ii
x0
x1
x2
=
x1
(proof)
Theorem
If_ii_0
If_ii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ι
.
not
x0
⟶
If_ii
x0
x1
x2
=
x2
(proof)
Definition
If_iii
If_iii
:=
λ x0 : ο .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 .
If_i
x0
(
x1
x3
x4
)
(
x2
x3
x4
)
Theorem
If_iii_1
If_iii_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
x0
⟶
If_iii
x0
x1
x2
=
x1
(proof)
Theorem
If_iii_0
If_iii_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ι
.
not
x0
⟶
If_iii
x0
x1
x2
=
x2
(proof)
Definition
If_Vo1
If_Vo1
:=
λ x0 : ο .
λ x1 x2 :
ι → ο
.
λ x3 .
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
If_Vo1_1
If_Vo1_1
:
∀ x0 : ο .
∀ x1 x2 :
ι → ο
.
x0
⟶
If_Vo1
x0
x1
x2
=
x1
(proof)
Theorem
If_Vo1_0
If_Vo1_0
:
∀ x0 : ο .
∀ x1 x2 :
ι → ο
.
not
x0
⟶
If_Vo1
x0
x1
x2
=
x2
(proof)
Definition
If_iio
If_iio
:=
λ x0 : ο .
λ x1 x2 :
ι →
ι → ο
.
λ x3 x4 .
and
(
x0
⟶
x1
x3
x4
)
(
not
x0
⟶
x2
x3
x4
)
Theorem
If_iio_1
If_iio_1
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ο
.
x0
⟶
If_iio
x0
x1
x2
=
x1
(proof)
Theorem
If_iio_0
If_iio_0
:
∀ x0 : ο .
∀ x1 x2 :
ι →
ι → ο
.
not
x0
⟶
If_iio
x0
x1
x2
=
x2
(proof)
Definition
If_Vo2
If_Vo2
:=
λ x0 : ο .
λ x1 x2 :
(
ι → ο
)
→ ο
.
λ x3 :
ι → ο
.
and
(
x0
⟶
x1
x3
)
(
not
x0
⟶
x2
x3
)
Theorem
If_Vo2_1
If_Vo2_1
:
∀ x0 : ο .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
x0
⟶
If_Vo2
x0
x1
x2
=
x1
(proof)
Theorem
If_Vo2_0
If_Vo2_0
:
∀ x0 : ο .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
not
x0
⟶
If_Vo2
x0
x1
x2
=
x2
(proof)
Definition
In_rec_i_G
In_rec_i_G
:=
λ x0 :
ι →
(
ι → ι
)
→ ι
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
∀ x5 :
ι → ι
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_i
In_rec_i
:=
λ x0 :
ι →
(
ι → ι
)
→ ι
.
λ x1 .
prim0
(
In_rec_i_G
x0
x1
)
Theorem
In_rec_i_G_c
In_rec_i_G_c
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
In_rec_i_G
x0
x3
(
x2
x3
)
)
⟶
In_rec_i_G
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
In_rec_i_G_inv
In_rec_i_G_inv
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 x2 .
In_rec_i_G
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
and
(
∀ x5 .
x5
∈
x1
⟶
In_rec_i_G
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
In_rec_i_G_f
In_rec_i_G_f
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 x2 x3 .
In_rec_i_G
x0
x1
x2
⟶
In_rec_i_G
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
In_rec_i_G_In_rec_i
In_rec_i_G_In_rec_i
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i_G
x0
x1
(
In_rec_i
x0
x1
)
(proof)
Theorem
In_rec_i_G_In_rec_i_d
In_rec_i_G_In_rec_i_d
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i_G
x0
x1
(
x0
x1
(
In_rec_i
x0
)
)
(proof)
Theorem
In_rec_i_eq
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_i
x0
x1
=
x0
x1
(
In_rec_i
x0
)
(proof)
Definition
In_rec_G_ii
In_rec_G_ii
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
λ x2 :
ι → ι
.
∀ x3 :
ι →
(
ι → ι
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_ii
In_rec_ii
:=
λ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
λ x1 .
Descr_ii
(
In_rec_G_ii
x0
x1
)
Theorem
In_rec_G_ii_c
In_rec_G_ii_c
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
In_rec_G_ii
x0
x3
(
x2
x3
)
)
⟶
In_rec_G_ii
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
In_rec_G_ii_inv
In_rec_G_ii_inv
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι → ι
.
In_rec_G_ii
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ι
.
and
(
∀ x5 .
x5
∈
x1
⟶
In_rec_G_ii
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
In_rec_G_ii_f
In_rec_G_ii_f
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι → ι
.
In_rec_G_ii
x0
x1
x2
⟶
In_rec_G_ii
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
In_rec_G_ii_In_rec_ii
In_rec_G_ii_In_rec_ii
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_ii
x0
x1
(
In_rec_ii
x0
x1
)
(proof)
Theorem
In_rec_G_ii_In_rec_ii_d
In_rec_G_ii_In_rec_ii_d
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_ii
x0
x1
(
x0
x1
(
In_rec_ii
x0
)
)
(proof)
Theorem
In_rec_ii_eq
In_rec_ii_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_ii
x0
x1
=
x0
x1
(
In_rec_ii
x0
)
(proof)
Definition
In_rec_G_iii
In_rec_G_iii
:=
λ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
λ x1 .
λ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
(
ι →
ι → ι
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_iii
In_rec_iii
:=
λ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
λ x1 .
Descr_iii
(
In_rec_G_iii
x0
x1
)
Theorem
In_rec_G_iii_c
In_rec_G_iii_c
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
In_rec_G_iii
x0
x3
(
x2
x3
)
)
⟶
In_rec_G_iii
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
In_rec_G_iii_inv
In_rec_G_iii_inv
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
In_rec_G_iii
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι → ι
.
and
(
∀ x5 .
x5
∈
x1
⟶
In_rec_G_iii
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
In_rec_G_iii_f
In_rec_G_iii_f
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
In_rec_G_iii
x0
x1
x2
⟶
In_rec_G_iii
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
In_rec_G_iii_In_rec_iii
In_rec_G_iii_In_rec_iii
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_iii
x0
x1
(
In_rec_iii
x0
x1
)
(proof)
Theorem
In_rec_G_iii_In_rec_iii_d
In_rec_G_iii_In_rec_iii_d
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_G_iii
x0
x1
(
x0
x1
(
In_rec_iii
x0
)
)
(proof)
Theorem
In_rec_iii_eq
In_rec_iii_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_iii
x0
x1
=
x0
x1
(
In_rec_iii
x0
)
(proof)
Definition
6b023..
:=
λ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
λ x1 .
λ x2 :
ι →
ι → ο
.
∀ x3 :
ι →
(
ι →
ι → ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_iio
In_rec_iio
:=
λ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
λ x1 .
Descr_iio
(
6b023..
x0
x1
)
Theorem
6f12d..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
6b023..
x0
x3
(
x2
x3
)
)
⟶
6b023..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
b0c8e..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
6b023..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι →
ι → ο
.
and
(
∀ x5 .
x5
∈
x1
⟶
6b023..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
41db9..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
6b023..
x0
x1
x2
⟶
6b023..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
409d6..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6b023..
x0
x1
(
In_rec_iio
x0
x1
)
(proof)
Theorem
67223..
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
6b023..
x0
x1
(
x0
x1
(
In_rec_iio
x0
)
)
(proof)
Theorem
In_rec_iio_eq
In_rec_iio_eq
:
∀ x0 :
ι →
(
ι →
ι →
ι → ο
)
→
ι →
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_iio
x0
x1
=
x0
x1
(
In_rec_iio
x0
)
(proof)
Definition
f6068..
:=
λ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
λ x1 .
λ x2 :
ι → ο
.
∀ x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
ι → ο
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_Vo1
In_rec_Vo1
:=
λ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
λ x1 .
Descr_Vo1
(
f6068..
x0
x1
)
Theorem
0d2cd..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 .
x3
∈
x1
⟶
f6068..
x0
x3
(
x2
x3
)
)
⟶
f6068..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
4d242..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι → ο
.
f6068..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
ι → ο
.
and
(
∀ x5 .
x5
∈
x1
⟶
f6068..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
ebaf1..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
ι → ο
.
f6068..
x0
x1
x2
⟶
f6068..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
2f624..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
f6068..
x0
x1
(
In_rec_Vo1
x0
x1
)
(proof)
Theorem
722ac..
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
f6068..
x0
x1
(
x0
x1
(
In_rec_Vo1
x0
)
)
(proof)
Theorem
In_rec_Vo1_eq
In_rec_Vo1_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→
ι → ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_Vo1
x0
x1
=
x0
x1
(
In_rec_Vo1
x0
)
(proof)
Definition
2b1c2..
:=
λ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
λ x1 .
λ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
(
(
ι → ο
)
→ ο
)
→ ο
.
(
∀ x4 .
∀ x5 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x6 .
x6
∈
x4
⟶
x3
x6
(
x5
x6
)
)
⟶
x3
x4
(
x0
x4
x5
)
)
⟶
x3
x1
x2
Definition
In_rec_Vo2
In_rec_Vo2
:=
λ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
λ x1 .
Descr_Vo2
(
2b1c2..
x0
x1
)
Theorem
07e5d..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x3 .
x3
∈
x1
⟶
2b1c2..
x0
x3
(
x2
x3
)
)
⟶
2b1c2..
x0
x1
(
x0
x1
x2
)
(proof)
Theorem
994ef..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
2b1c2..
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 :
ι →
(
ι → ο
)
→ ο
.
and
(
∀ x5 .
x5
∈
x1
⟶
2b1c2..
x0
x5
(
x4
x5
)
)
(
x2
=
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
d8d0b..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
2b1c2..
x0
x1
x2
⟶
2b1c2..
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
2cb7a..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
2b1c2..
x0
x1
(
In_rec_Vo2
x0
x1
)
(proof)
Theorem
00e25..
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
2b1c2..
x0
x1
(
x0
x1
(
In_rec_Vo2
x0
)
)
(proof)
Theorem
In_rec_Vo2_eq
In_rec_Vo2_eq
:
∀ x0 :
ι →
(
ι →
(
ι → ο
)
→ ο
)
→
(
ι → ο
)
→ ο
.
(
∀ x1 .
∀ x2 x3 :
ι →
(
ι → ο
)
→ ο
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_Vo2
x0
x1
=
x0
x1
(
In_rec_Vo2
x0
)
(proof)