Search for blocks/addresses/...
Proofgold Asset
asset id
481edc0d6b5a7bbd3f1f7d77f5c9cb0ef50a8e31550fec7186fe06b1cbcea91b
asset hash
634804cc88bc60d22ee988001c5cc789c5437e0c5b502a50936a4992c1c69476
bday / block
19279
tx
e68a5..
preasset
doc published by
Pr4zB..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Known
not_TwoRamseyProp_4_4_17
not_TwoRamseyProp_4_4_17
:
not
(
TwoRamseyProp
4
4
17
)
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
db1de..
:
exp_nat
2
4
=
16
Param
nat_p
nat_p
:
ι
→
ο
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Known
nat_4
nat_4
:
nat_p
4
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
nat_17
nat_17
:
nat_p
17
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
485cd..
not_TwoRamseyProp_4_4_Power_4
:
not
(
TwoRamseyProp
4
4
(
prim4
4
)
)
(proof)
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Known
b8b19..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x2
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
nat_5
nat_5
:
nat_p
5
Known
In_4_5
In_4_5
:
4
∈
5
Theorem
5b30a..
not_TwoRamseyProp_4_5_Power_4
:
not
(
TwoRamseyProp
4
5
(
prim4
4
)
)
(proof)