Search for blocks/addresses/...
Proofgold Asset
asset id
48c9f799ec0a7022683b8162294b603fe37963e6e5c15027de8f437d3e9aae33
asset hash
c896103e886eb5fc0fe681a7a50c5087fa7e384a14472450011648622086a44a
bday / block
31380
tx
daf5d..
preasset
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
equip
equip
:
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
ordinal
ordinal
:
ι
→
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
2ec5a..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
atleastp
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x2
)
⟶
x2
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Known
1b508..
:
∀ x0 x1 .
finite
x0
⟶
atleastp
x1
x0
⟶
x0
⊆
x1
⟶
x0
=
x1
Known
adjoin_finite
adjoin_finite
:
∀ x0 x1 .
finite
x0
⟶
finite
(
binunion
x0
(
Sing
x1
)
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_0
nat_0
:
nat_p
0
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_1
nat_1
:
nat_p
1
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
d778e..
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
nIn
x4
x1
)
⟶
equip
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Definition
u1
:=
1
Known
5169f..
equip_Sing_1
:
∀ x0 .
equip
(
Sing
x0
)
u1
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Theorem
be1cd..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
equip
(
ordsucc
x0
)
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
ordinal
x2
)
⟶
∀ x2 : ο .
(
∀ x3 x4 .
equip
x0
x3
⟶
x4
∈
x1
⟶
x3
⊆
x1
⟶
x3
⊆
x4
⟶
x1
=
binunion
x3
(
Sing
x4
)
⟶
x2
)
⟶
x2
(proof)
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Theorem
480b2..
:
add_nat
u3
u1
=
u4
(proof)
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Param
u13
:
ι
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Known
nat_trans
nat_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
nat_17
nat_17
:
nat_p
u17
Known
e57ea..
:
u11
∈
u17
Theorem
b4ae4..
:
u11
⊆
u17
(proof)
Known
nat_8
nat_8
:
nat_p
8
Known
In_6_8
In_6_8
:
6
∈
8
Theorem
bd770..
:
u6
⊆
u8
(proof)
Known
In_7_8
In_7_8
:
7
∈
8
Theorem
021ac..
:
u7
⊆
u8
(proof)
Param
setminus
setminus
:
ι
→
ι
→
ι
Definition
u12
:=
ordsucc
u11
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
660da..
:
∀ x0 .
x0
∈
u16
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
46814..
:
0
∈
12
Known
2b77d..
:
1
∈
12
Known
7c2ac..
:
2
∈
12
Known
2f583..
:
3
∈
12
Known
e4fc0..
:
4
∈
12
Known
04716..
:
5
∈
12
Known
fbe39..
:
6
∈
12
Known
35d73..
:
7
∈
12
Known
5196c..
:
8
∈
12
Known
4fa36..
:
9
∈
12
Known
42552..
:
10
∈
12
Known
fee2e..
:
11
∈
12
Theorem
ee881..
:
∀ x0 .
x0
∈
setminus
u16
u12
⟶
∀ x1 :
ι → ο
.
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Theorem
4fd0a..
:
∀ x0 .
x0
∈
setminus
u17
u12
⟶
∀ x1 :
ι → ο
.
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
x0
(proof)
Definition
u18
:=
ordsucc
u17
Theorem
7618f..
:
∀ x0 .
x0
∈
setminus
u18
u12
⟶
∀ x1 :
ι → ο
.
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
u16
⟶
x1
u17
⟶
x1
x0
(proof)
Known
866c8..
:
∀ x0 .
x0
∈
u12
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
Known
In_0_6
In_0_6
:
0
∈
6
Known
In_1_6
In_1_6
:
1
∈
6
Known
In_2_6
In_2_6
:
2
∈
6
Known
In_3_6
In_3_6
:
3
∈
6
Known
In_4_6
In_4_6
:
4
∈
6
Known
In_5_6
In_5_6
:
5
∈
6
Theorem
49949..
:
∀ x0 .
x0
∈
setminus
u12
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
(proof)
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
823c9..
:
∀ x0 .
x0
∈
setminus
u16
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
(proof)
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
0420f..
:
∀ x0 .
x0
∈
setminus
u15
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
x0
(proof)
Theorem
a1137..
:
∀ x0 .
x0
∈
setminus
u14
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
x0
(proof)
Theorem
5786d..
:
∀ x0 .
x0
∈
setminus
u13
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
(proof)
Theorem
090fa..
:
∀ x0 .
x0
∈
setminus
u11
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
x0
(proof)
Theorem
86222..
:
∀ x0 .
x0
∈
setminus
u10
u6
⟶
∀ x1 :
ι → ο
.
x1
u6
⟶
x1
u7
⟶
x1
u8
⟶
x1
u9
⟶
x1
x0
(proof)
Theorem
27661..
:
∀ x0 .
x0
∈
setminus
u12
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
x0
(proof)
Theorem
853d4..
:
∀ x0 .
x0
∈
setminus
u16
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
u15
⟶
x1
x0
(proof)
Theorem
332b1..
:
∀ x0 .
x0
∈
setminus
u15
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
u14
⟶
x1
x0
(proof)
Theorem
98cac..
:
∀ x0 .
x0
∈
setminus
u14
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
u13
⟶
x1
x0
(proof)
Theorem
fc2d4..
:
∀ x0 .
x0
∈
setminus
u13
u10
⟶
∀ x1 :
ι → ο
.
x1
u10
⟶
x1
u11
⟶
x1
u12
⟶
x1
x0
(proof)
Known
In_0_8
In_0_8
:
0
∈
8
Known
In_1_8
In_1_8
:
1
∈
8
Known
In_2_8
In_2_8
:
2
∈
8
Known
In_3_8
In_3_8
:
3
∈
8
Known
In_4_8
In_4_8
:
4
∈
8
Known
In_5_8
In_5_8
:
5
∈
8
Theorem
bf41f..
:
∀ x0 .
x0
∈
setminus
u12
u8
⟶
∀ x1 :
ι → ο
.
x1
u8
⟶
x1
u9
⟶
x1
u10
⟶
x1
u11
⟶
x1
x0
(proof)