Search for blocks/addresses/...

Proofgold Asset

asset id
4a1c8080748927ef16792de9fe27088cdd2d1fe66e444c888b16179d8591d4b4
asset hash
d51487138be16fb8a3a79311499651ee707a93bfe905b3f1b68d1a7b4791b22b
bday / block
27239
tx
4570c..
preasset
doc published by Pr5Zc..
Known 45f87.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 . x0 x2x0 x3x0 x4x0 x5x1 x2 (x1 x3 (x1 x4 x5)) = x1 x3 (x1 x4 (x1 x2 x5))
Known ee53b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x7 (x1 x8 (x1 x4 (x1 x5 x9))))))
Theorem e30c8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem 5cc1d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x4 (x1 x5 x6)))))) (proof)
Known 75b00.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x2 x7))))
Theorem 62c59.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x5 (x1 x6 x4)))))) (proof)
Theorem 97c50.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x5 (x1 x6 x4)))))) (proof)
Known d28ef.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x7 (x1 x8 (x1 x5 (x1 x4 x9))))))
Theorem 2bdc2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 50cd5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 2a199.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem efbc5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x6 (x1 x5 x4)))))) (proof)
Known 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 . x0 x2x0 x3x0 x4x0 x5x0 x6x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6)))
Theorem 2154d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x6 (x1 x4 x5)))))) (proof)
Theorem c7153.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x9 (x1 x6 (x1 x4 x5)))))) (proof)
Known df56c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x6 (x1 x3 (x1 x2 (x1 x7 (x1 x5 (x1 x4 x8)))))
Theorem fc02f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x4 (x1 x9 x5)))))) (proof)
Theorem 9aabd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x4 (x1 x9 x5)))))) (proof)
Theorem 1e071.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x5 (x1 x9 x4)))))) (proof)
Theorem 15edf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x5 (x1 x9 x4)))))) (proof)
Known 48d5c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x7 (x1 x5 (x1 x8 (x1 x4 x9))))))
Theorem 8792e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x9 (x1 x5 x4)))))) (proof)
Theorem 1c440.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x9 (x1 x5 x4)))))) (proof)
Theorem 25ef3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x9 (x1 x4 x5)))))) (proof)
Theorem bdcdb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x9 (x1 x4 x5)))))) (proof)
Theorem 66be5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x4 (x1 x9 x6)))))) (proof)
Theorem 08002.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x4 (x1 x9 x6)))))) (proof)
Known 9ae99.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x6 (x1 x3 (x1 x2 (x1 x7 (x1 x4 (x1 x5 x8)))))
Theorem 668d1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x6 (x1 x9 x4)))))) (proof)
Theorem 68d40.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x6 (x1 x9 x4)))))) (proof)
Known 717bc.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x7 (x1 x4 (x1 x8 (x1 x5 x9))))))
Theorem 139f8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x9 (x1 x6 x4)))))) (proof)
Theorem 6e5ca.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x9 (x1 x6 x4)))))) (proof)
Theorem 908c1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x9 (x1 x4 x6)))))) (proof)
Theorem 28a34.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x9 (x1 x4 x6)))))) (proof)
Theorem 2737d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x5 (x1 x9 x6)))))) (proof)
Theorem b1ba0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x5 (x1 x9 x6)))))) (proof)
Theorem 7882a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x6 (x1 x9 x5)))))) (proof)
Theorem fbd13.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x6 (x1 x9 x5)))))) (proof)
Theorem 59928.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x9 (x1 x6 x5)))))) (proof)
Theorem ac412.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x9 (x1 x6 x5)))))) (proof)
Theorem db0e9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x9 (x1 x5 x6)))))) (proof)
Theorem 25b29.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x9 (x1 x5 x6)))))) (proof)
Known 483a4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x8 (x1 x7 (x1 x4 (x1 x5 x9))))))
Theorem 036ea.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x4 (x1 x6 x5)))))) (proof)
Theorem f143c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x4 (x1 x6 x5)))))) (proof)
Theorem b0d36.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem 44916.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x4 (x1 x5 x6)))))) (proof)
Theorem 9bfec.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x5 (x1 x6 x4)))))) (proof)
Theorem baacd.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x5 (x1 x6 x4)))))) (proof)
Known 4a7f4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x8 (x1 x7 (x1 x5 (x1 x4 x9))))))
Theorem c3827.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem ff5ee.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x5 (x1 x4 x6)))))) (proof)
Theorem 5d417.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem 825c6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x6 (x1 x5 x4)))))) (proof)
Theorem 6dd74.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x6 (x1 x4 x5)))))) (proof)
Theorem 66519.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x8 (x1 x6 (x1 x4 x5)))))) (proof)
Known a4e3d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x4 (x1 x7 x9))))))
Theorem 8917a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x4 (x1 x8 x5)))))) (proof)
Theorem c0e22.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x4 (x1 x8 x5)))))) (proof)
Known 95985.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x4 (x1 x5 x9))))))
Theorem 586a1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x4 (x1 x5 x8)))))) (proof)
Theorem 77966.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x4 (x1 x5 x8)))))) (proof)
Theorem 225d6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x5 (x1 x8 x4)))))) (proof)
Theorem 9507d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x5 (x1 x8 x4)))))) (proof)
Known 25481.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x6 (x1 x5 (x1 x4 x9))))))
Theorem cce1f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x5 (x1 x4 x8)))))) (proof)
Theorem 2daf5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x5 (x1 x4 x8)))))) (proof)
Known 171cf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x7 (x1 x4 x9))))))
Theorem d420f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x8 (x1 x5 x4)))))) (proof)
Theorem 82747.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x8 (x1 x5 x4)))))) (proof)
Theorem bfdc0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x8 (x1 x4 x5)))))) (proof)
Theorem 232c1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x6 (x1 x8 (x1 x4 x5)))))) (proof)
Theorem 57f8b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x8 x6)))))) (proof)
Theorem fc895.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x8 x6)))))) (proof)
Known 55f9f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x4 (x1 x6 x9))))))
Theorem 2d9a8.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x6 x8)))))) (proof)
Theorem 0303f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x4 (x1 x6 x8)))))) (proof)
Known 7b320.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x5 (x1 x7 x9))))))
Theorem e4f8b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x6 (x1 x8 x4)))))) (proof)
Theorem 31c70.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x6 (x1 x8 x4)))))) (proof)
Known 7dd89.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x5 (x1 x6 (x1 x4 x9))))))
Theorem b13a9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x6 (x1 x4 x8)))))) (proof)
Theorem d9cee.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x6 (x1 x4 x8)))))) (proof)
Known 05b11.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x7 (x1 x5 x9))))))
Theorem ef28d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x6 x4)))))) (proof)
Theorem 19569.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x6 x4)))))) (proof)
Theorem e8584.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x4 x6)))))) (proof)
Theorem a1674.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x5 (x1 x8 (x1 x4 x6)))))) (proof)
Theorem 538a4.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x8 x6)))))) (proof)
Theorem 1f664.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x8 x6)))))) (proof)
Known 10a71.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x5 (x1 x6 x9))))))
Theorem a1721.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x6 x8)))))) (proof)
Theorem a5927.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x5 (x1 x6 x8)))))) (proof)
Theorem f1957.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x6 (x1 x8 x5)))))) (proof)
Theorem 9da30.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x6 (x1 x8 x5)))))) (proof)
Known 84b1c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x8 (x1 x4 (x1 x6 (x1 x5 x9))))))
Theorem 838a5.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x6 (x1 x5 x8)))))) (proof)
Theorem ae6a9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x6 (x1 x5 x8)))))) (proof)
Theorem 2edde.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x8 (x1 x6 x5)))))) (proof)
Theorem b6f17.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x8 (x1 x6 x5)))))) (proof)
Theorem dff36.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x8 (x1 x5 x6)))))) (proof)
Theorem f877f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x3 (x1 x2 (x1 x9 (x1 x4 (x1 x8 (x1 x5 x6)))))) (proof)
Known 28361.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x4 (x1 x8 (x1 x2 (x1 x7 (x1 x3 (x1 x5 x9))))))
Theorem 8a1e0.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x3 (x1 x6 x5)))))) (proof)
Theorem 4007f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x3 (x1 x6 x5)))))) (proof)
Theorem ab6f9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x3 (x1 x5 x6)))))) (proof)
Theorem 83ab6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x3 (x1 x5 x6)))))) (proof)
Known c0c54.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8)))))
Known f05bb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x4 (x1 x5 x9))))))
Theorem 749f6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x5 (x1 x6 x3)))))) (proof)
Theorem fd163.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x5 (x1 x6 x3)))))) (proof)
Known ef279.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x4 (x1 x8 (x1 x2 (x1 x7 (x1 x5 (x1 x3 x9))))))
Theorem 7db78.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x5 (x1 x3 x6)))))) (proof)
Theorem c4912.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x5 (x1 x3 x6)))))) (proof)
Known c4f5d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x8 (x1 x2 (x1 x7 (x1 x5 (x1 x4 x9))))))
Theorem 785bf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x6 (x1 x5 x3)))))) (proof)
Theorem eeeb6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x6 (x1 x5 x3)))))) (proof)
Theorem 00279.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x6 (x1 x3 x5)))))) (proof)
Theorem c62bf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x8 (x1 x6 (x1 x3 x5)))))) (proof)
Known 541a3.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x4 (x1 x8 (x1 x2 (x1 x5 (x1 x3 (x1 x7 x9))))))
Theorem 65b9e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x3 (x1 x8 x5)))))) (proof)
Theorem 0116a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x3 (x1 x8 x5)))))) (proof)
Known 5e152.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x8 (x1 x2 (x1 x6 (x1 x3 (x1 x5 x9))))))
Theorem 2e510.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x3 (x1 x5 x8)))))) (proof)
Theorem 3ff0c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x3 (x1 x5 x8)))))) (proof)
Known e831b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x8 (x1 x2 (x1 x5 (x1 x4 (x1 x7 x9))))))
Theorem eaf3e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x5 (x1 x8 x3)))))) (proof)
Theorem a4d22.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x5 (x1 x8 x3)))))) (proof)
Known c684a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x8 (x1 x2 (x1 x6 (x1 x5 (x1 x3 x9))))))
Theorem 6d80a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x5 (x1 x3 x8)))))) (proof)
Theorem 4cff9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x5 (x1 x3 x8)))))) (proof)
Known e69c1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x3 (x1 x8 (x1 x2 (x1 x5 (x1 x7 (x1 x4 x9))))))
Theorem 35305.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x8 (x1 x5 x3)))))) (proof)
Theorem e1bd1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x8 (x1 x5 x3)))))) (proof)
Known f897d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x4 (x1 x8 (x1 x2 (x1 x5 (x1 x7 (x1 x3 x9))))))
Theorem a92a7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4))(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x8 (x1 x3 x5)))))) (proof)
Theorem 5a583.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2x0 x3x0 (x1 x2 x3))(∀ x2 x3 x4 . x0 x2x0 x3x0 x4x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4)(∀ x2 x3 . x0 x2x0 x3x1 x2 x3 = x1 x3 x2)∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2x0 x3x0 x4x0 x5x0 x6x0 x7x0 x8x0 x9x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x7 (x1 x4 (x1 x9 (x1 x2 (x1 x6 (x1 x8 (x1 x3 x5)))))) (proof)