Search for blocks/addresses/...

Proofgold Asset

asset id
20e76153a61d5f58ff2d058e54b40f50e1299950e0b837fd100081713be63132
asset hash
4b057e3f422ac5538eb25da06c619e2dd442dac1bac219bb1cb8b07f9fd844f9
bday / block
9342
tx
29d26..
preasset
doc published by PrGxv..
Param ordsuccordsucc : ιι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Known In_0_9In_0_9 : 09
Theorem d4e95.. : 010 (proof)
Known In_1_9In_1_9 : 19
Theorem b7a5e.. : 110 (proof)
Known In_2_9In_2_9 : 29
Theorem 3c603.. : 210 (proof)
Known In_3_9In_3_9 : 39
Theorem 01826.. : 310 (proof)
Known In_4_9In_4_9 : 49
Theorem 35ffd.. : 410 (proof)
Known In_5_9In_5_9 : 59
Theorem a1b2a.. : 510 (proof)
Known In_6_9In_6_9 : 69
Theorem 1beb5.. : 610 (proof)
Known In_7_9In_7_9 : 79
Theorem 16542.. : 710 (proof)
Known In_8_9In_8_9 : 89
Theorem 56b84.. : 810 (proof)
Known ordsuccI2ordsuccI2 : ∀ x0 . x0ordsucc x0
Theorem fa1e6.. : 910 (proof)
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known If_i_1If_i_1 : ∀ x0 : ο . ∀ x1 x2 . x0If_i x0 x1 x2 = x1
Theorem 3105e.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 0 = x0 (proof)
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known If_i_0If_i_0 : ∀ x0 : ο . ∀ x1 x2 . not x0If_i x0 x1 x2 = x2
Known neq_1_0neq_1_0 : 1 = 0∀ x0 : ο . x0
Theorem f0027.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 1 = x1 (proof)
Known neq_2_0neq_2_0 : 2 = 0∀ x0 : ο . x0
Known neq_2_1neq_2_1 : 2 = 1∀ x0 : ο . x0
Theorem 71234.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 2 = x2 (proof)
Known neq_3_0neq_3_0 : 3 = 0∀ x0 : ο . x0
Known neq_3_1neq_3_1 : 3 = 1∀ x0 : ο . x0
Known neq_3_2neq_3_2 : 3 = 2∀ x0 : ο . x0
Theorem cb998.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 3 = x3 (proof)
Known neq_4_0neq_4_0 : 4 = 0∀ x0 : ο . x0
Known neq_4_1neq_4_1 : 4 = 1∀ x0 : ο . x0
Known neq_4_2neq_4_2 : 4 = 2∀ x0 : ο . x0
Known neq_4_3neq_4_3 : 4 = 3∀ x0 : ο . x0
Theorem bd5cb.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 4 = x4 (proof)
Known neq_5_0neq_5_0 : 5 = 0∀ x0 : ο . x0
Known neq_5_1neq_5_1 : 5 = 1∀ x0 : ο . x0
Known neq_5_2neq_5_2 : 5 = 2∀ x0 : ο . x0
Known neq_5_3neq_5_3 : 5 = 3∀ x0 : ο . x0
Known neq_5_4neq_5_4 : 5 = 4∀ x0 : ο . x0
Theorem 11217.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 5 = x5 (proof)
Known neq_6_0neq_6_0 : 6 = 0∀ x0 : ο . x0
Known neq_6_1neq_6_1 : 6 = 1∀ x0 : ο . x0
Known neq_6_2neq_6_2 : 6 = 2∀ x0 : ο . x0
Known neq_6_3neq_6_3 : 6 = 3∀ x0 : ο . x0
Known neq_6_4neq_6_4 : 6 = 4∀ x0 : ο . x0
Known neq_6_5neq_6_5 : 6 = 5∀ x0 : ο . x0
Theorem bc2b8.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 6 = x6 (proof)
Known neq_7_0neq_7_0 : 7 = 0∀ x0 : ο . x0
Known neq_7_1neq_7_1 : 7 = 1∀ x0 : ο . x0
Known neq_7_2neq_7_2 : 7 = 2∀ x0 : ο . x0
Known neq_7_3neq_7_3 : 7 = 3∀ x0 : ο . x0
Known neq_7_4neq_7_4 : 7 = 4∀ x0 : ο . x0
Known neq_7_5neq_7_5 : 7 = 5∀ x0 : ο . x0
Known neq_7_6neq_7_6 : 7 = 6∀ x0 : ο . x0
Theorem c16dd.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 7 = x7 (proof)
Known neq_8_0neq_8_0 : 8 = 0∀ x0 : ο . x0
Known neq_8_1neq_8_1 : 8 = 1∀ x0 : ο . x0
Known neq_8_2neq_8_2 : 8 = 2∀ x0 : ο . x0
Known neq_8_3neq_8_3 : 8 = 3∀ x0 : ο . x0
Known neq_8_4neq_8_4 : 8 = 4∀ x0 : ο . x0
Known neq_8_5neq_8_5 : 8 = 5∀ x0 : ο . x0
Known neq_8_6neq_8_6 : 8 = 6∀ x0 : ο . x0
Known neq_8_7neq_8_7 : 8 = 7∀ x0 : ο . x0
Theorem 0f630.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 8 = x8 (proof)
Known neq_9_0neq_9_0 : 9 = 0∀ x0 : ο . x0
Known neq_9_1neq_9_1 : 9 = 1∀ x0 : ο . x0
Known neq_9_2neq_9_2 : 9 = 2∀ x0 : ο . x0
Known neq_9_3neq_9_3 : 9 = 3∀ x0 : ο . x0
Known neq_9_4neq_9_4 : 9 = 4∀ x0 : ο . x0
Known neq_9_5neq_9_5 : 9 = 5∀ x0 : ο . x0
Known neq_9_6neq_9_6 : 9 = 6∀ x0 : ο . x0
Known neq_9_7neq_9_7 : 9 = 7∀ x0 : ο . x0
Known neq_9_8neq_9_8 : 9 = 8∀ x0 : ο . x0
Theorem 06839.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (lam 10 (λ x11 . If_i (x11 = 0) x0 (If_i (x11 = 1) x1 (If_i (x11 = 2) x2 (If_i (x11 = 3) x3 (If_i (x11 = 4) x4 (If_i (x11 = 5) x5 (If_i (x11 = 6) x6 (If_i (x11 = 7) x7 (If_i (x11 = 8) x8 x9)))))))))) 9 = x9 (proof)
Definition 4a740.. := λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . lam 10 (λ x10 . If_i (x10 = 0) x0 (If_i (x10 = 1) x1 (If_i (x10 = 2) x2 (If_i (x10 = 3) x3 (If_i (x10 = 4) x4 (If_i (x10 = 5) x5 (If_i (x10 = 6) x6 (If_i (x10 = 7) x7 (If_i (x10 = 8) x8 x9)))))))))
Theorem 1d6af.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 0 = x0 (proof)
Theorem ada9b.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 1 = x1 (proof)
Theorem 5b3bf.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 2 = x2 (proof)
Theorem 7684e.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 3 = x3 (proof)
Theorem 601d3.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 4 = x4 (proof)
Theorem f536c.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 5 = x5 (proof)
Theorem 6a688.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 6 = x6 (proof)
Theorem 83113.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 7 = x7 (proof)
Theorem 1d841.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 8 = x8 (proof)
Theorem d7ed7.. : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 . ap (4a740.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9) 9 = x9 (proof)