Search for blocks/addresses/...
Proofgold Asset
asset id
4b4765a960a5c327b412fb4288395d63a04f02223474e02b2766602cd13b7100
asset hash
de3662908a62d927ce3db7a75f1ae766ef49bc1100e53f168b32acdfe53df2e5
bday / block
19222
tx
ddf6a..
preasset
doc published by
Pr4zB..
Definition
Church6_p
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
x1
(
λ x2 x3 x4 x5 x6 x7 .
x2
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 .
x3
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 .
x4
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 .
x5
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 .
x6
)
⟶
x1
(
λ x2 x3 x4 x5 x6 x7 .
x7
)
⟶
x1
x0
Theorem
2d0c6..
:
Church6_p
(
λ x0 x1 x2 x3 x4 x5 .
x0
)
(proof)
Theorem
bebec..
:
Church6_p
(
λ x0 x1 x2 x3 x4 x5 .
x1
)
(proof)
Theorem
8c295..
:
Church6_p
(
λ x0 x1 x2 x3 x4 x5 .
x2
)
(proof)
Theorem
3b22d..
:
Church6_p
(
λ x0 x1 x2 x3 x4 x5 .
x3
)
(proof)
Theorem
41e6a..
:
Church6_p
(
λ x0 x1 x2 x3 x4 x5 .
x4
)
(proof)
Theorem
28e18..
:
Church6_p
(
λ x0 x1 x2 x3 x4 x5 .
x5
)
(proof)
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Param
u2
:
ι
Param
u3
:
ι
Param
u4
:
ι
Param
u5
:
ι
Definition
Church6_to_u6
:=
λ x0 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x0
0
u1
u2
u3
u4
u5
Param
u6
:
ι
Known
cases_6
cases_6
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
x0
Theorem
cases_6
cases_6
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
u1
⟶
x1
u2
⟶
x1
u3
⟶
x1
u4
⟶
x1
u5
⟶
x1
x0
(proof)
Known
In_0_6
In_0_6
:
0
∈
u6
Theorem
In_0_6
In_0_6
:
0
∈
u6
(proof)
Known
In_1_6
In_1_6
:
u1
∈
u6
Theorem
In_1_6
In_1_6
:
u1
∈
u6
(proof)
Known
In_2_6
In_2_6
:
u2
∈
u6
Theorem
In_2_6
In_2_6
:
u2
∈
u6
(proof)
Known
In_3_6
In_3_6
:
u3
∈
u6
Theorem
In_3_6
In_3_6
:
u3
∈
u6
(proof)
Known
In_4_6
In_4_6
:
u4
∈
u6
Theorem
In_4_6
In_4_6
:
u4
∈
u6
(proof)
Known
In_5_6
In_5_6
:
u5
∈
u6
Theorem
In_5_6
In_5_6
:
u5
∈
u6
(proof)
Theorem
17ae2..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 : ο .
(
∀ x2 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_p
x2
⟶
x0
=
Church6_to_u6
x2
⟶
x1
)
⟶
x1
(proof)
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Definition
nth_6_tuple
:=
λ x0 x1 x2 x3 x4 x5 x6 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x1
(
If_i
(
x7
=
1
)
x2
(
If_i
(
x7
=
2
)
x3
(
If_i
(
x7
=
3
)
x4
(
If_i
(
x7
=
4
)
x5
x6
)
)
)
)
)
)
x0
Theorem
f957d..
:
∀ x0 .
∀ x1 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 x3 x4 x5 x6 x7 .
nth_6_tuple
x0
x2
x3
x4
x5
x6
x7
=
x1
x2
x3
x4
x5
x6
x7
)
⟶
nth_6_tuple
x0
=
x1
(proof)
Known
tuple_6_1_eq
tuple_6_1_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u1
=
x1
Theorem
tuple_6_1_eq
tuple_6_1_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u1
=
x1
(proof)
Known
tuple_6_2_eq
tuple_6_2_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u2
=
x2
Theorem
tuple_6_2_eq
tuple_6_2_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u2
=
x2
(proof)
Known
tuple_6_3_eq
tuple_6_3_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u3
=
x3
Theorem
tuple_6_3_eq
tuple_6_3_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u3
=
x3
(proof)
Known
tuple_6_4_eq
tuple_6_4_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u4
=
x4
Theorem
tuple_6_4_eq
tuple_6_4_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u4
=
x4
(proof)
Known
tuple_6_5_eq
tuple_6_5_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u5
=
x5
Theorem
tuple_6_5_eq
tuple_6_5_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
u5
=
x5
(proof)
Known
tuple_6_0_eq
tuple_6_0_eq
:
∀ x0 x1 x2 x3 x4 x5 .
ap
(
lam
6
(
λ x7 .
If_i
(
x7
=
0
)
x0
(
If_i
(
x7
=
1
)
x1
(
If_i
(
x7
=
2
)
x2
(
If_i
(
x7
=
3
)
x3
(
If_i
(
x7
=
4
)
x4
x5
)
)
)
)
)
)
0
=
x0
Theorem
a1243..
:
nth_6_tuple
0
=
λ x1 x2 x3 x4 x5 x6 .
x1
(proof)
Theorem
a7cad..
:
nth_6_tuple
u1
=
λ x1 x2 x3 x4 x5 x6 .
x2
(proof)
Theorem
a0d60..
:
nth_6_tuple
u2
=
λ x1 x2 x3 x4 x5 x6 .
x3
(proof)
Theorem
89684..
:
nth_6_tuple
u3
=
λ x1 x2 x3 x4 x5 x6 .
x4
(proof)
Theorem
33924..
:
nth_6_tuple
u4
=
λ x1 x2 x3 x4 x5 x6 .
x5
(proof)
Theorem
fed6d..
:
nth_6_tuple
u5
=
λ x1 x2 x3 x4 x5 x6 .
x6
(proof)
Theorem
38ba0..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_p
x0
⟶
Church6_to_u6
x0
∈
u6
(proof)
Theorem
3b8c0..
:
∀ x0 .
x0
∈
u6
⟶
Church6_p
(
nth_6_tuple
x0
)
(proof)
Theorem
985a3..
:
∀ x0 .
x0
∈
u6
⟶
Church6_to_u6
(
nth_6_tuple
x0
)
=
x0
(proof)
Theorem
60d0e..
:
∀ x0 .
x0
∈
u6
⟶
∀ x1 .
x1
∈
u6
⟶
nth_6_tuple
x0
=
nth_6_tuple
x1
⟶
x0
=
x1
(proof)
Theorem
3ac64..
:
∀ x0 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_p
x0
⟶
nth_6_tuple
(
Church6_to_u6
x0
)
=
x0
(proof)
Theorem
b4e23..
:
∀ x0 x1 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_p
x0
⟶
Church6_p
x1
⟶
Church6_to_u6
x0
=
Church6_to_u6
x1
⟶
x0
=
x1
(proof)
Definition
8915b..
:=
λ x0 :
(
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
lam
2
(
λ x1 .
If_i
(
x1
=
0
)
(
Church6_to_u6
(
x0
(
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x2
)
)
)
(
Church6_to_u6
(
x0
(
λ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x3
)
)
)
)
Definition
4aafd..
:=
λ x0 .
λ x1 :
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x1
(
nth_6_tuple
(
ap
x0
0
)
)
(
nth_6_tuple
(
ap
x0
u1
)
)
Definition
884c6..
:=
λ x0 :
(
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x1 :
(
(
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→ ο
.
(
∀ x2 x3 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
Church6_p
x2
⟶
Church6_p
x3
⟶
x1
(
λ x4 :
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
x4
x2
x3
)
)
⟶
x1
x0
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Theorem
b4e0c..
:
∀ x0 :
(
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
884c6..
x0
⟶
8915b..
x0
∈
setprod
u6
u6
(proof)
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Theorem
b410a..
:
∀ x0 .
x0
∈
setprod
u6
u6
⟶
884c6..
(
4aafd..
x0
)
(proof)
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Theorem
f4bbb..
:
∀ x0 .
x0
∈
setprod
u6
u6
⟶
8915b..
(
4aafd..
x0
)
=
x0
(proof)
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Theorem
b98f5..
:
∀ x0 :
(
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
884c6..
x0
⟶
4aafd..
(
8915b..
x0
)
=
x0
(proof)
Theorem
0b928..
:
∀ x0 .
x0
∈
setprod
u6
u6
⟶
∀ x1 .
x1
∈
setprod
u6
u6
⟶
4aafd..
x0
=
4aafd..
x1
⟶
x0
=
x1
(proof)
Theorem
7a51b..
:
∀ x0 x1 :
(
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
(
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
)
→
ι →
ι →
ι →
ι →
ι →
ι → ι
.
884c6..
x0
⟶
884c6..
x1
⟶
8915b..
x0
=
8915b..
x1
⟶
x0
=
x1
(proof)