Search for blocks/addresses/...
Proofgold Asset
asset id
3be9829aae9b1cd26ec3b277c9607723fc34a0dd4739e93066d60f7a4375a1c1
asset hash
4e17799abd2804ba3162296f2249b0c0dff64c38d3dd4deb8b4dbab41a03b470
bday / block
16810
tx
27254..
preasset
doc published by
PrGxv..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Known
idl_negcycle_16
idl_negcycle_16
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNoLt
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
x31
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x16
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x17
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x18
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x19
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x20
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x21
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x22
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x23
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x24
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x25
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x26
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x27
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x28
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x29
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x30
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x15
)
)
x31
⟶
False
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_0
SNo_0
:
SNo
0
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
add_SNo_com_3b_1_2
add_SNo_com_3b_1_2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
add_SNo
x0
x2
)
x1
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Theorem
idl_negcycle_17
idl_negcycle_17
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNo
x32
⟶
SNo
x33
⟶
SNoLt
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
(
add_SNo
x31
(
add_SNo
x32
x33
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x17
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x18
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x19
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x20
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x21
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x22
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x23
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x24
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x25
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x26
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x27
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x28
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x29
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x30
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x31
⟶
SNoLe
(
add_SNo
x16
(
minus_SNo
x15
)
)
x32
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x16
)
)
x33
⟶
False
(proof)
Theorem
idl_negcycle_18
idl_negcycle_18
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNo
x32
⟶
SNo
x33
⟶
SNo
x34
⟶
SNo
x35
⟶
SNoLt
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
(
add_SNo
x31
(
add_SNo
x32
(
add_SNo
x33
(
add_SNo
x34
x35
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x18
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x19
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x20
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x21
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x22
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x23
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x24
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x25
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x26
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x27
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x28
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x29
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x30
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x31
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x32
⟶
SNoLe
(
add_SNo
x16
(
minus_SNo
x15
)
)
x33
⟶
SNoLe
(
add_SNo
x17
(
minus_SNo
x16
)
)
x34
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x17
)
)
x35
⟶
False
(proof)
Theorem
idl_negcycle_19
idl_negcycle_19
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNo
x32
⟶
SNo
x33
⟶
SNo
x34
⟶
SNo
x35
⟶
SNo
x36
⟶
SNo
x37
⟶
SNoLt
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
(
add_SNo
x31
(
add_SNo
x32
(
add_SNo
x33
(
add_SNo
x34
(
add_SNo
x35
(
add_SNo
x36
x37
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x19
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x20
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x21
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x22
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x23
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x24
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x25
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x26
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x27
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x28
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x29
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x30
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x31
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x32
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x33
⟶
SNoLe
(
add_SNo
x16
(
minus_SNo
x15
)
)
x34
⟶
SNoLe
(
add_SNo
x17
(
minus_SNo
x16
)
)
x35
⟶
SNoLe
(
add_SNo
x18
(
minus_SNo
x17
)
)
x36
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x18
)
)
x37
⟶
False
(proof)
Theorem
idl_negcycle_20
idl_negcycle_20
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNo
x32
⟶
SNo
x33
⟶
SNo
x34
⟶
SNo
x35
⟶
SNo
x36
⟶
SNo
x37
⟶
SNo
x38
⟶
SNo
x39
⟶
SNoLt
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
(
add_SNo
x31
(
add_SNo
x32
(
add_SNo
x33
(
add_SNo
x34
(
add_SNo
x35
(
add_SNo
x36
(
add_SNo
x37
(
add_SNo
x38
x39
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x20
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x21
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x22
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x23
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x24
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x25
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x26
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x27
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x28
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x29
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x30
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x31
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x32
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x33
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x34
⟶
SNoLe
(
add_SNo
x16
(
minus_SNo
x15
)
)
x35
⟶
SNoLe
(
add_SNo
x17
(
minus_SNo
x16
)
)
x36
⟶
SNoLe
(
add_SNo
x18
(
minus_SNo
x17
)
)
x37
⟶
SNoLe
(
add_SNo
x19
(
minus_SNo
x18
)
)
x38
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x19
)
)
x39
⟶
False
(proof)
Theorem
idl_negcycle_21
idl_negcycle_21
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNo
x32
⟶
SNo
x33
⟶
SNo
x34
⟶
SNo
x35
⟶
SNo
x36
⟶
SNo
x37
⟶
SNo
x38
⟶
SNo
x39
⟶
SNo
x40
⟶
SNo
x41
⟶
SNoLt
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
(
add_SNo
x31
(
add_SNo
x32
(
add_SNo
x33
(
add_SNo
x34
(
add_SNo
x35
(
add_SNo
x36
(
add_SNo
x37
(
add_SNo
x38
(
add_SNo
x39
(
add_SNo
x40
x41
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x21
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x22
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x23
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x24
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x25
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x26
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x27
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x28
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x29
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x30
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x31
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x32
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x33
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x34
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x35
⟶
SNoLe
(
add_SNo
x16
(
minus_SNo
x15
)
)
x36
⟶
SNoLe
(
add_SNo
x17
(
minus_SNo
x16
)
)
x37
⟶
SNoLe
(
add_SNo
x18
(
minus_SNo
x17
)
)
x38
⟶
SNoLe
(
add_SNo
x19
(
minus_SNo
x18
)
)
x39
⟶
SNoLe
(
add_SNo
x20
(
minus_SNo
x19
)
)
x40
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x20
)
)
x41
⟶
False
(proof)
Theorem
idl_negcycle_22
idl_negcycle_22
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37 x38 x39 x40 x41 x42 x43 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
SNo
x31
⟶
SNo
x32
⟶
SNo
x33
⟶
SNo
x34
⟶
SNo
x35
⟶
SNo
x36
⟶
SNo
x37
⟶
SNo
x38
⟶
SNo
x39
⟶
SNo
x40
⟶
SNo
x41
⟶
SNo
x42
⟶
SNo
x43
⟶
SNoLt
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
add_SNo
x30
(
add_SNo
x31
(
add_SNo
x32
(
add_SNo
x33
(
add_SNo
x34
(
add_SNo
x35
(
add_SNo
x36
(
add_SNo
x37
(
add_SNo
x38
(
add_SNo
x39
(
add_SNo
x40
(
add_SNo
x41
(
add_SNo
x42
x43
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
0
⟶
SNoLe
(
add_SNo
x1
(
minus_SNo
x0
)
)
x22
⟶
SNoLe
(
add_SNo
x2
(
minus_SNo
x1
)
)
x23
⟶
SNoLe
(
add_SNo
x3
(
minus_SNo
x2
)
)
x24
⟶
SNoLe
(
add_SNo
x4
(
minus_SNo
x3
)
)
x25
⟶
SNoLe
(
add_SNo
x5
(
minus_SNo
x4
)
)
x26
⟶
SNoLe
(
add_SNo
x6
(
minus_SNo
x5
)
)
x27
⟶
SNoLe
(
add_SNo
x7
(
minus_SNo
x6
)
)
x28
⟶
SNoLe
(
add_SNo
x8
(
minus_SNo
x7
)
)
x29
⟶
SNoLe
(
add_SNo
x9
(
minus_SNo
x8
)
)
x30
⟶
SNoLe
(
add_SNo
x10
(
minus_SNo
x9
)
)
x31
⟶
SNoLe
(
add_SNo
x11
(
minus_SNo
x10
)
)
x32
⟶
SNoLe
(
add_SNo
x12
(
minus_SNo
x11
)
)
x33
⟶
SNoLe
(
add_SNo
x13
(
minus_SNo
x12
)
)
x34
⟶
SNoLe
(
add_SNo
x14
(
minus_SNo
x13
)
)
x35
⟶
SNoLe
(
add_SNo
x15
(
minus_SNo
x14
)
)
x36
⟶
SNoLe
(
add_SNo
x16
(
minus_SNo
x15
)
)
x37
⟶
SNoLe
(
add_SNo
x17
(
minus_SNo
x16
)
)
x38
⟶
SNoLe
(
add_SNo
x18
(
minus_SNo
x17
)
)
x39
⟶
SNoLe
(
add_SNo
x19
(
minus_SNo
x18
)
)
x40
⟶
SNoLe
(
add_SNo
x20
(
minus_SNo
x19
)
)
x41
⟶
SNoLe
(
add_SNo
x21
(
minus_SNo
x20
)
)
x42
⟶
SNoLe
(
add_SNo
x0
(
minus_SNo
x21
)
)
x43
⟶
False
(proof)