Search for blocks/addresses/...
Proofgold Asset
asset id
ef8d31904ffcb09e44af8ff456e12ba4ef394da2606912c6f847b37a77fa6c7f
asset hash
4ed67d8c6202e2d217d71cc5a9255c0117c443f147a5aa6d476da5d0d71c45d0
bday / block
28786
tx
ff216..
preasset
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
and
and
:
ο
→
ο
→
ο
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
8698a..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
x4
x5
Param
nat_p
nat_p
:
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_2
nat_2
:
nat_p
2
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Known
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
f0ba0..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x1
x2
x3
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x2
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
u2
)
⟶
∀ x2 x3 x4 x5 .
x2
⊆
x0
⟶
x3
⊆
x0
⟶
x4
⊆
x0
⟶
x5
⊆
x0
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x2
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
nIn
x6
x5
)
⟶
∀ x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x6
∈
x4
⟶
x7
∈
x4
⟶
x3
=
SetAdjoin
(
SetAdjoin
(
UPair
x10
x11
)
x12
)
x13
⟶
x14
∈
x2
⟶
x15
∈
x5
⟶
(
x6
=
x7
⟶
∀ x16 : ο .
x16
)
⟶
x1
x6
x7
⟶
x1
x6
x10
⟶
x1
x6
x15
⟶
x1
x7
x14
⟶
x1
x7
x11
⟶
x1
x12
x15
⟶
not
(
x1
x14
x6
)
⟶
x1
x14
x15
⟶
x1
x13
x15
⟶
∀ x16 .
x16
∈
x3
⟶
not
(
x1
x14
x16
)
(proof)
Param
u6
:
ι
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Theorem
50435..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x1
x2
x3
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x2
)
(
DirGraphOutNeighbors
x0
x1
x3
)
)
u2
)
⟶
∀ x2 x3 x4 x5 .
x2
⊆
x0
⟶
x3
⊆
x0
⟶
x4
⊆
x0
⟶
x5
⊆
x0
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x2
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
nIn
x6
x5
)
⟶
∀ x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
x6
∈
x4
⟶
x7
∈
x4
⟶
x3
=
SetAdjoin
(
SetAdjoin
(
UPair
x10
x11
)
x12
)
x13
⟶
x14
∈
x2
⟶
x15
∈
x5
⟶
(
x7
=
x6
⟶
∀ x16 : ο .
x16
)
⟶
(
x8
=
x6
⟶
∀ x16 : ο .
x16
)
⟶
(
x9
=
x6
⟶
∀ x16 : ο .
x16
)
⟶
(
x8
=
x7
⟶
∀ x16 : ο .
x16
)
⟶
(
x9
=
x7
⟶
∀ x16 : ο .
x16
)
⟶
(
x9
=
x8
⟶
∀ x16 : ο .
x16
)
⟶
x1
x6
x7
⟶
x1
x7
x8
⟶
x1
x8
x9
⟶
x1
x9
x6
⟶
x1
x6
x10
⟶
x1
x6
x15
⟶
x1
x7
x14
⟶
x1
x7
x11
⟶
x1
x12
x15
⟶
not
(
x1
x14
x6
)
⟶
x1
x14
x15
⟶
x1
x13
x15
⟶
∀ x16 .
x16
∈
x3
⟶
not
(
x1
x14
x16
)
(proof)