Search for blocks/addresses/...

Proofgold Asset

asset id
c21b4151cb7d2587dffd298f62bdc67a3c21384da94c4f1308c38b662b9b14fb
asset hash
4f0ef4bc7bd9d3cefc813916c4399a78a55e99136f6521d5cfbf0cb6a5a11e22
bday / block
144
tx
6735c..
preasset
doc published by Pr8qe..
Known False_defFalse_def : False = ∀ x1 : ο . x1
Known True_defTrue_def : True = ∀ x1 : ο . x1x1
Known not_defnot_def : not = λ x1 : ο . x1False
Known and_defand_def : and = λ x1 x2 : ο . ∀ x3 : ο . (x1x2x3)x3
Theorem FalseEFalseE : False∀ x0 : ο . x0 (proof)
Theorem TrueITrueI : True (proof)
Theorem notEnotE : ∀ x0 : ο . not x0x0False (proof)
Theorem andEandE : ∀ x0 x1 : ο . and x0 x1∀ x2 : ο . (x0x1x2)x2 (proof)
Theorem and_notTrue : ∀ x0 : ο . and x0 (not True)∀ x1 : ο . x1 (proof)
Theorem first_bounty_thm : (∀ x0 : ι → ο . ∀ x1 : ι → ι . and ((x0 (x1 (binintersect (x1 (Power 0)) (x1 (binrep (Power (Power (Power 0))) 0))))TransSet (x1 0)∀ x2 . In x2 0∀ x3 : ο . (∀ x4 . and (Subq x4 x2) (exactly2 (ordsucc (x1 x4)))x3)x3)∀ x2 : ο . (∀ x3 . and (∀ x4 : ο . (∀ x5 . and (Subq x5 x3) (x3 = x1 x3∀ x6 : ο . (∀ x7 . and (Subq x7 x3) (not (x0 (setprod x5 (binrep (Power (binrep (Power (Power 0)) 0)) (Power (Power 0))))))x6)x6)x4)x4) (not (SNo x3))x2)x2) (not (x0 (x1 (x1 (x1 (binrep (binrep (Power (binrep (Power (Power 0)) 0)) (Power 0)) 0)))))))∀ x0 : ο . x0 (proof)