Search for blocks/addresses/...
Proofgold Asset
asset id
c21b4151cb7d2587dffd298f62bdc67a3c21384da94c4f1308c38b662b9b14fb
asset hash
4f0ef4bc7bd9d3cefc813916c4399a78a55e99136f6521d5cfbf0cb6a5a11e22
bday / block
144
tx
6735c..
preasset
doc published by
Pr8qe..
Known
False_def
False_def
:
False
=
∀ x1 : ο .
x1
Known
True_def
True_def
:
True
=
∀ x1 : ο .
x1
⟶
x1
Known
not_def
not_def
:
not
=
λ x1 : ο .
x1
⟶
False
Known
and_def
and_def
:
and
=
λ x1 x2 : ο .
∀ x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
x3
Theorem
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
(proof)
Theorem
TrueI
TrueI
:
True
(proof)
Theorem
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
(proof)
Theorem
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
(proof)
Theorem
and_notTrue
:
∀ x0 : ο .
and
x0
(
not
True
)
⟶
∀ x1 : ο .
x1
(proof)
Theorem
first_bounty_thm
:
(
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
and
(
(
x0
(
x1
(
binintersect
(
x1
(
Power
0
)
)
(
x1
(
binrep
(
Power
(
Power
(
Power
0
)
)
)
0
)
)
)
)
⟶
TransSet
(
x1
0
)
⟶
∀ x2 .
In
x2
0
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
Subq
x4
x2
)
(
exactly2
(
ordsucc
(
x1
x4
)
)
)
⟶
x3
)
⟶
x3
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
∀ x4 : ο .
(
∀ x5 .
and
(
Subq
x5
x3
)
(
x3
=
x1
x3
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
Subq
x7
x3
)
(
not
(
x0
(
setprod
x5
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
Power
(
Power
0
)
)
)
)
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
(
not
(
SNo
x3
)
)
⟶
x2
)
⟶
x2
)
(
not
(
x0
(
x1
(
x1
(
x1
(
binrep
(
binrep
(
Power
(
binrep
(
Power
(
Power
0
)
)
0
)
)
(
Power
0
)
)
0
)
)
)
)
)
)
)
⟶
∀ x0 : ο .
x0
(proof)