Search for blocks/addresses/...
Proofgold Asset
asset id
4f47184515ae5c6e7d9e210dfa6d0b2da048473f5c50f3a2787ec639177b8310
asset hash
e0467ca67eab8fe39e4e812a7f3ea7888f611c2076383d796ff829dc96f7242b
bday / block
28269
tx
3797b..
preasset
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Param
1eb0a..
:
ι
→
ο
Param
bbc71..
:
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
→
ι
Known
d5242..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
1eb0a..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
Param
8dd2c..
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
340c0..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
8dd2c..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
x2
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
Known
95571..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
8dd2c..
x0
)
Known
212d5..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
8dd2c..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x0
Param
d4639..
:
(
ι
→
ι
) →
ι
→
ι
Known
26f49..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
d4639..
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x1
=
bbc71..
(
x0
x1
)
(
d4639..
x0
x1
)
x3
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
Known
fd099..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
∀ x1 .
1eb0a..
x1
⟶
SNo
(
d4639..
x0
x1
)
Known
33b4a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
d4639..
x0
(
bbc71..
x1
x2
x3
x4
x5
x6
x7
x8
)
=
x2
Param
50208..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
9b0e1..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
50208..
x0
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
(
50208..
x0
x1
x2
)
x4
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
Known
1131a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
∀ x2 .
1eb0a..
x2
⟶
SNo
(
50208..
x0
x1
x2
)
Known
90339..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
50208..
x0
x1
(
bbc71..
x2
x3
x4
x5
x6
x7
x8
x9
)
=
x4
Param
8d7df..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
0a376..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
8d7df..
x0
x1
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
(
8d7df..
x0
x1
x2
x3
)
x5
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
Known
5e734..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
∀ x3 .
1eb0a..
x3
⟶
SNo
(
8d7df..
x0
x1
x2
x3
)
Known
71a99..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
8d7df..
x0
x1
x2
(
bbc71..
x3
x4
x5
x6
x7
x8
x9
x10
)
=
x6
Param
41ec1..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
15adc..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
41ec1..
x0
x1
x2
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
(
41ec1..
x0
x1
x2
x3
x4
)
x6
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
Known
af528..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
∀ x4 .
1eb0a..
x4
⟶
SNo
(
41ec1..
x0
x1
x2
x3
x4
)
Known
26f65..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
41ec1..
x0
x1
x2
x3
(
bbc71..
x4
x5
x6
x7
x8
x9
x10
x11
)
=
x8
Param
28f5a..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
baa4b..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
28f5a..
x0
x1
x2
x3
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
(
28f5a..
x0
x1
x2
x3
x4
x5
)
x7
x9
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
Known
69bbd..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
∀ x5 .
1eb0a..
x5
⟶
SNo
(
28f5a..
x0
x1
x2
x3
x4
x5
)
Known
62fb0..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
28f5a..
x0
x1
x2
x3
x4
(
bbc71..
x5
x6
x7
x8
x9
x10
x11
x12
)
=
x10
Param
717b4..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
42518..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
)
⟶
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
x8
)
⟶
x7
)
⟶
x7
)
Known
9599d..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
)
⟶
∀ x6 .
1eb0a..
x6
⟶
SNo
(
717b4..
x0
x1
x2
x3
x4
x5
x6
)
Known
c7d23..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
717b4..
x0
x1
x2
x3
x4
x5
(
bbc71..
x6
x7
x8
x9
x10
x11
x12
x13
)
=
x12
Param
053de..
:
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ι
→
ι
Known
0b166..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x9
)
⟶
x8
)
⟶
x8
)
)
⟶
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
)
Known
0c70a..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x9
)
⟶
x8
)
⟶
x8
)
)
⟶
∀ x7 .
1eb0a..
x7
⟶
SNo
(
053de..
x0
x1
x2
x3
x4
x5
x6
x7
)
Known
48feb..
:
∀ x0 :
ι → ι
.
(
∀ x1 .
1eb0a..
x1
⟶
and
(
SNo
(
x0
x1
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
SNo
x3
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
SNo
x15
)
(
x1
=
bbc71..
(
x0
x1
)
x3
x5
x7
x9
x11
x13
x15
)
⟶
x14
)
⟶
x14
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
)
⟶
(
∀ x1 .
1eb0a..
x1
⟶
SNo
(
x0
x1
)
)
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
1eb0a..
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
SNo
x14
)
(
x2
=
bbc71..
(
x0
x2
)
(
x1
x2
)
x4
x6
x8
x10
x12
x14
)
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
)
⟶
(
∀ x2 .
1eb0a..
x2
⟶
SNo
(
x1
x2
)
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
1eb0a..
x3
⟶
and
(
SNo
(
x2
x3
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
SNo
x5
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
SNo
x13
)
(
x3
=
bbc71..
(
x0
x3
)
(
x1
x3
)
(
x2
x3
)
x5
x7
x9
x11
x13
)
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
)
⟶
(
∀ x3 .
1eb0a..
x3
⟶
SNo
(
x2
x3
)
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
1eb0a..
x4
⟶
and
(
SNo
(
x3
x4
)
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x4
=
bbc71..
(
x0
x4
)
(
x1
x4
)
(
x2
x4
)
(
x3
x4
)
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
)
⟶
(
∀ x4 .
1eb0a..
x4
⟶
SNo
(
x3
x4
)
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
1eb0a..
x5
⟶
and
(
SNo
(
x4
x5
)
)
(
∀ x6 : ο .
(
∀ x7 .
and
(
SNo
x7
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
SNo
x11
)
(
x5
=
bbc71..
(
x0
x5
)
(
x1
x5
)
(
x2
x5
)
(
x3
x5
)
(
x4
x5
)
x7
x9
x11
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
)
⟶
(
∀ x5 .
1eb0a..
x5
⟶
SNo
(
x4
x5
)
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
1eb0a..
x6
⟶
and
(
SNo
(
x5
x6
)
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x6
=
bbc71..
(
x0
x6
)
(
x1
x6
)
(
x2
x6
)
(
x3
x6
)
(
x4
x6
)
(
x5
x6
)
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
)
⟶
(
∀ x6 .
1eb0a..
x6
⟶
SNo
(
x5
x6
)
)
⟶
∀ x6 :
ι → ι
.
(
∀ x7 .
1eb0a..
x7
⟶
and
(
SNo
(
x6
x7
)
)
(
∀ x8 : ο .
(
∀ x9 .
and
(
SNo
x9
)
(
x7
=
bbc71..
(
x0
x7
)
(
x1
x7
)
(
x2
x7
)
(
x3
x7
)
(
x4
x7
)
(
x5
x7
)
(
x6
x7
)
x9
)
⟶
x8
)
⟶
x8
)
)
⟶
(
∀ x7 .
1eb0a..
x7
⟶
SNo
(
x6
x7
)
)
⟶
∀ x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
053de..
x0
x1
x2
x3
x4
x5
x6
(
bbc71..
x7
x8
x9
x10
x11
x12
x13
x14
)
=
x14
Definition
c6963..
:=
d4639..
8dd2c..
Definition
a9894..
:=
50208..
8dd2c..
c6963..
Definition
da724..
:=
8d7df..
8dd2c..
c6963..
a9894..
Definition
adebb..
:=
41ec1..
8dd2c..
c6963..
a9894..
da724..
Definition
91922..
:=
28f5a..
8dd2c..
c6963..
a9894..
da724..
adebb..
Definition
b8e07..
:=
717b4..
8dd2c..
c6963..
a9894..
da724..
adebb..
91922..
Definition
7f2e4..
:=
053de..
8dd2c..
c6963..
a9894..
da724..
adebb..
91922..
b8e07..
Theorem
4b34b..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
c6963..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
SNo
x12
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
x2
x4
x6
x8
x10
x12
)
⟶
x11
)
⟶
x11
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
675f4..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
c6963..
x0
)
(proof)
Theorem
58949..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
c6963..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x1
(proof)
Theorem
f91a2..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
a9894..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
∀ x9 : ο .
(
∀ x10 .
and
(
SNo
x10
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
x2
x4
x6
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
81e66..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
a9894..
x0
)
(proof)
Theorem
a1757..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
a9894..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x2
(proof)
Theorem
5715b..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
da724..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
∀ x7 : ο .
(
∀ x8 .
and
(
SNo
x8
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
x2
x4
x6
x8
)
⟶
x7
)
⟶
x7
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
5281f..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
da724..
x0
)
(proof)
Theorem
289a1..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
da724..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x3
(proof)
Theorem
f2017..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
adebb..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
SNo
x6
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
x2
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
a3b2d..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
adebb..
x0
)
(proof)
Theorem
b270b..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
adebb..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x4
(proof)
Theorem
fd6e0..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
91922..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
SNo
x4
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
x2
x4
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
692bd..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
91922..
x0
)
(proof)
Theorem
49c7e..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
91922..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x5
(proof)
Theorem
91074..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
b8e07..
x0
)
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
SNo
x2
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
(
b8e07..
x0
)
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
4eec6..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
b8e07..
x0
)
(proof)
Theorem
6c9e3..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
b8e07..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x6
(proof)
Theorem
9fc1b..
:
∀ x0 .
1eb0a..
x0
⟶
and
(
SNo
(
7f2e4..
x0
)
)
(
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
(
b8e07..
x0
)
(
7f2e4..
x0
)
)
(proof)
Theorem
b67dd..
:
∀ x0 .
1eb0a..
x0
⟶
SNo
(
7f2e4..
x0
)
(proof)
Theorem
c1dff..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
7f2e4..
(
bbc71..
x0
x1
x2
x3
x4
x5
x6
x7
)
=
x7
(proof)
Theorem
b4523..
:
∀ x0 .
1eb0a..
x0
⟶
x0
=
bbc71..
(
8dd2c..
x0
)
(
c6963..
x0
)
(
a9894..
x0
)
(
da724..
x0
)
(
adebb..
x0
)
(
91922..
x0
)
(
b8e07..
x0
)
(
7f2e4..
x0
)
(proof)