Search for blocks/addresses/...

Proofgold Asset

asset id
51d4f0f23be38e465d9d15e0f94400c7e52eed1508b53ec71ee0b9b4b93380ee
asset hash
31dfbec0c419050adadc75635961c77df452c30abbb8e4c7e15affe2710475ad
bday / block
19081
tx
19da8..
preasset
doc published by Pr4zB..
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Definition u14 := ordsucc u13
Definition u15 := ordsucc u14
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition u16 := ordsucc u15
Param atleastpatleastp : ιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known 1c7b4.. : ∀ x0 : ι → ι → ο . x0 0 u2x0 u4 u6x0 u1 u12x0 u5 u12x0 u8 u12x0 u9 u12x0 u3 u13x0 u7 u13x0 u10 u13x0 u2 u14x0 u6 u14x0 u11 u14x0 0 u15x0 u4 u15∀ x1 . x1u16atleastp u6 x1u12x1u13x1u14x1(∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3))False
Param binintersectbinintersect : ιιι
Definition nInnIn := λ x0 x1 . not (x0x1)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param add_natadd_nat : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known f03aa.. : ∀ x0 . atleastp 3 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)x1)x1
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Known FalseEFalseE : False∀ x0 : ο . x0
Param nat_pnat_p : ιο
Known 48e0f.. : ∀ x0 . nat_p x0∀ x1 . or (atleastp x1 x0) (atleastp (ordsucc x0) x1)
Known nat_2nat_2 : nat_p 2
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_5nat_5 : nat_p 5
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Param binunionbinunion : ιιι
Param SingSing : ιι
Param setsumsetsum : ιιι
Known nat_setsum_ordsuccnat_setsum1_ordsucc : ∀ x0 . nat_p x0setsum 1 x0 = ordsucc x0
Known nat_4nat_4 : nat_p 4
Known 385ef.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x0nIn x4 x1)atleastp (binunion x0 x1) (setsum x2 x3)
Known 4f2c3.. : ∀ x0 . atleastp (Sing x0) u1
Known nat_3nat_3 : nat_p 3
Known In_no4cycleIn_no4cycle : ∀ x0 x1 x2 x3 . x0x1x1x2x2x3x3x0False
Known f6a92.. : 1213
Known 3ef99.. : 1314
Known 2e90c.. : 1415
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known binintersectE2binintersectE2 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known b8e82.. : u15 = u14∀ x0 : ο . x0
Known In_no3cycleIn_no3cycle : ∀ x0 x1 x2 . x0x1x1x2x2x0False
Known ef4da.. : u14 = u12∀ x0 : ο . x0
Known 72647.. : u15 = u12∀ x0 : ο . x0
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known nat_In_atleastp : ∀ x0 . nat_p x0∀ x1 . x1x0atleastp x1 x0
Known In_2_3In_2_3 : 23
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known In_0_5In_0_5 : 05
Known add_nat_0Ladd_nat_0L : ∀ x0 . nat_p x0add_nat 0 x0 = x0
Known nat_12nat_12 : nat_p 12
Known In_1_5In_1_5 : 15
Known add_nat_SLadd_nat_SL : ∀ x0 . nat_p x0∀ x1 . nat_p x1add_nat (ordsucc x0) x1 = ordsucc (add_nat x0 x1)
Known nat_0nat_0 : nat_p 0
Known In_2_5In_2_5 : 25
Known nat_1nat_1 : nat_p 1
Known In_3_5In_3_5 : 35
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known ordsuccEordsuccE : ∀ x0 x1 . x1ordsucc x0or (x1x0) (x1 = x0)
Known cases_9cases_9 : ∀ x0 . x09∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 4x1 5x1 6x1 7x1 8x1 x0
Theorem 6b8c1.. : ∀ x0 : ι → ι → ο . x0 0 u2x0 u4 u6x0 u1 u12x0 u5 u12x0 u8 u12x0 u9 u12x0 u3 u13x0 u7 u13x0 u10 u13x0 u2 u14x0 u6 u14x0 u11 u14x0 0 u15x0 u4 u15x0 u3 u4x0 0 u7x0 u10 u14∀ x1 . x1u16atleastp u6 x1u12x1u14x1(∀ x2 . x2x1∀ x3 . x3x1not (x0 x2 x3))False (proof)