Search for blocks/addresses/...
Proofgold Asset
asset id
172901a41cecccfc83ff76e01b5d42c71046222e75af8f53ce304f2203db0a3c
asset hash
52cdf50a7b117d1b1720c76cb968de8566ef6de8d806a3236c3fa5de8dd0dfcd
bday / block
35146
tx
73355..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
fc0a3..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι → ο
.
∀ x8 :
ι → ι
.
∀ x9 x10 :
ι → ο
.
∀ x11 .
∀ x12 :
ι → ο
.
∀ x13 :
ι → ι
.
∀ x14 :
ι →
ι → ι
.
∀ x15 x16 :
ι → ι
.
∀ x17 :
ι →
ι → ο
.
∀ x18 .
∀ x19 :
ι → ι
.
∀ x20 :
ι →
ι → ι
.
∀ x21 x22 x23 x24 .
∀ x25 x26 :
ι →
ι → ι
.
∀ x27 :
ι → ι
.
∀ x28 x29 x30 :
ι →
ι →
ι → ι
.
∀ x31 x32 x33 x34 x35 .
∀ x36 :
ι →
ι →
ι → ι
.
∀ x37 x38 :
ι → ο
.
∀ x39 :
ι →
ι → ι
.
∀ x40 :
ι → ι
.
∀ x41 :
ι →
ι → ι
.
∀ x42 :
ι → ι
.
∀ x43 .
∀ x44 :
ι → ο
.
∀ x45 .
∀ x46 :
ι → ι
.
∀ x47 x48 .
∀ x49 :
ι → ο
.
∀ x50 :
ι →
ι → ο
.
∀ x51 :
ι → ι
.
∀ x52 :
ι →
ι → ο
.
∀ x53 x54 :
ι →
ι → ι
.
∀ x55 :
ι → ο
.
∀ x56 x57 :
ι →
ι → ι
.
∀ x58 :
ι → ι
.
∀ x59 :
ι →
ι → ι
.
∀ x60 :
ι → ι
.
∀ x61 :
ι → ο
.
∀ x62 :
ι →
ι → ο
.
∀ x63 :
ι →
ι → ι
.
∀ x64 .
(
∀ x65 x66 .
x66
=
x64
⟶
(
x63
x65
x66
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x66
=
x64
⟶
(
x63
x66
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x63
x65
x66
=
x64
⟶
(
x65
=
x64
⟶
False
)
⟶
(
x66
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
(
x66
=
x65
⟶
False
)
⟶
x0
x65
⟶
False
)
⟶
(
∀ x65 x66 .
x62
x65
x66
⟶
x0
x66
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
(
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x60
x67
=
x65
⟶
x60
x66
=
x65
⟶
(
x56
x67
x66
=
x57
(
x58
x65
)
(
x59
x67
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x62
x65
x66
⟶
x2
x66
(
x1
x67
)
⟶
x0
x67
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x62
x66
x67
⟶
x2
x67
(
x1
x65
)
⟶
(
x2
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x3
x65
=
x64
⟶
(
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x60
x65
=
x64
⟶
(
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x4
x66
x65
⟶
(
x2
x66
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x2
x66
(
x1
x65
)
⟶
(
x4
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x2
x65
x66
⟶
(
x0
x66
⟶
False
)
⟶
(
x62
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x54
x65
x64
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x62
x66
x65
⟶
(
x2
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x4
x65
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x66
(
x1
x67
)
⟶
(
x5
x67
x65
x66
=
x54
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x52
x66
x65
⟶
(
x53
x65
x66
=
x60
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 x69 x70 .
x55
x70
⟶
x7
x70
x65
x66
⟶
x2
x70
(
x1
(
x63
x65
x66
)
)
⟶
x55
x67
⟶
x7
x67
x69
x68
⟶
x2
x67
(
x1
(
x63
x69
x68
)
)
⟶
(
x6
x65
x69
x66
x68
x70
x67
=
x59
x70
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x58
x65
=
x51
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x55
(
x8
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x52
(
x8
x65
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x9
(
x8
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x61
(
x8
x65
)
⟶
False
)
⟶
False
)
⟶
(
(
x10
x11
⟶
False
)
⟶
False
)
⟶
(
x0
x11
⟶
False
)
⟶
(
∀ x65 .
(
x12
x65
⟶
False
)
⟶
x12
(
x13
x65
)
⟶
False
)
⟶
(
∀ x65 .
(
x12
x65
⟶
False
)
⟶
(
x2
(
x13
x65
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x55
(
x14
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x50
(
x14
x65
x66
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x52
(
x14
x66
x65
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x61
(
x14
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
(
x12
(
x15
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
x0
(
x15
x65
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
(
x2
(
x15
x65
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
x49
x48
⟶
False
)
⟶
(
(
x55
x48
⟶
False
)
⟶
False
)
⟶
(
(
x61
x48
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
(
x17
(
x16
x65
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
(
x2
(
x16
x65
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
(
x55
x18
⟶
False
)
⟶
False
)
⟶
(
(
x9
x18
⟶
False
)
⟶
False
)
⟶
(
(
x61
x18
⟶
False
)
⟶
False
)
⟶
(
x0
x18
⟶
False
)
⟶
(
∀ x65 .
x17
(
x19
x65
)
x65
⟶
False
)
⟶
(
∀ x65 .
(
x2
(
x19
x65
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x50
(
x20
x65
x66
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x52
(
x20
x66
x65
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x61
(
x20
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
(
x55
x47
⟶
False
)
⟶
False
)
⟶
(
(
x9
x47
⟶
False
)
⟶
False
)
⟶
(
(
x61
x47
⟶
False
)
⟶
False
)
⟶
(
x0
x21
⟶
False
)
⟶
(
∀ x65 .
(
x0
(
x46
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x2
(
x46
x65
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
(
x9
x45
⟶
False
)
⟶
False
)
⟶
(
(
x61
x45
⟶
False
)
⟶
False
)
⟶
(
(
x44
x43
⟶
False
)
⟶
False
)
⟶
(
(
x55
x43
⟶
False
)
⟶
False
)
⟶
(
(
x61
x43
⟶
False
)
⟶
False
)
⟶
(
(
x0
x22
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
x0
(
x42
x65
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
(
x2
(
x42
x65
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x50
(
x41
x65
x66
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x52
(
x41
x66
x65
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x61
(
x41
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x0
(
x41
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x2
(
x41
x65
x66
)
(
x1
(
x63
x66
x65
)
)
⟶
False
)
⟶
False
)
⟶
(
(
x61
x23
⟶
False
)
⟶
False
)
⟶
(
x0
x23
⟶
False
)
⟶
(
(
x55
x24
⟶
False
)
⟶
False
)
⟶
(
(
x61
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x65
(
x1
x67
)
⟶
(
x5
x67
x66
x66
=
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x54
x65
x65
=
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 .
x2
x68
(
x1
(
x63
x67
(
x63
x65
x66
)
)
)
⟶
(
x61
(
x3
x68
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
x61
x65
⟶
x0
(
x3
x65
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 .
x2
x68
(
x1
(
x63
(
x63
x66
x65
)
x67
)
)
⟶
(
x61
(
x60
x68
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x0
x65
⟶
False
)
⟶
x61
x65
⟶
x0
(
x60
x65
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 .
(
x61
(
x25
(
x26
x66
x65
)
(
x26
x68
x67
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x44
x66
⟶
x61
x65
⟶
x55
x65
⟶
x44
x65
⟶
(
x44
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x44
x66
⟶
x61
x65
⟶
x55
x65
⟶
x44
x65
⟶
(
x61
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x61
(
x63
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x50
x67
x65
⟶
x61
x66
⟶
(
x50
(
x54
x67
x66
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x61
(
x40
(
x26
x66
x65
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
(
x25
x65
x66
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x52
x67
x65
⟶
x61
x66
⟶
(
x52
(
x57
x67
x66
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x52
x67
x66
⟶
x61
x65
⟶
(
x61
(
x57
x67
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
(
x40
x65
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x52
x67
x65
⟶
x61
x66
⟶
(
x52
(
x54
x67
x66
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x0
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x0
(
x56
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x0
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
(
x56
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x0
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
(
x56
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x50
x67
x65
⟶
x61
x66
⟶
(
x50
(
x57
x66
x67
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x50
x67
x66
⟶
x61
x65
⟶
(
x61
(
x57
x65
x67
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x12
x65
⟶
x61
x65
⟶
(
x12
(
x3
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x12
x65
⟶
x61
x65
⟶
(
x12
(
x60
x65
)
⟶
False
)
⟶
False
)
⟶
(
(
x0
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
(
x1
x65
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
(
x61
(
x54
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x0
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x0
(
x56
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x0
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
(
x56
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x0
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
(
x56
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x55
(
x40
(
x26
x66
x65
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x38
x66
⟶
x55
x66
⟶
(
x0
(
x39
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x12
x65
⟶
False
)
⟶
x61
x65
⟶
x55
x65
⟶
x12
(
x60
x65
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x10
x67
⟶
x61
x65
⟶
x50
x65
x67
⟶
x55
x65
⟶
(
x55
(
x39
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x10
x67
⟶
x61
x65
⟶
x50
x65
x67
⟶
x55
x65
⟶
(
x61
(
x39
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x61
x65
⟶
x9
x65
⟶
(
x9
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x61
x65
⟶
x9
x65
⟶
(
x61
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x10
(
x25
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x55
x65
⟶
(
x10
(
x40
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
(
x61
(
x57
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
(
x0
(
x57
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x55
x65
⟶
(
x49
x65
⟶
False
)
⟶
x12
(
x3
x65
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
(
x61
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
(
x0
(
x57
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x55
x65
⟶
x49
x65
⟶
(
x12
(
x3
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
(
x0
(
x3
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x0
x66
⟶
False
)
⟶
x61
x66
⟶
x9
x66
⟶
x55
x66
⟶
x2
x65
(
x60
x66
)
⟶
x0
(
x39
x66
x65
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x0
x66
⟶
False
)
⟶
(
x0
x65
⟶
False
)
⟶
x0
(
x63
x66
x65
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
(
x0
(
x60
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x9
x65
⟶
x55
x65
⟶
(
x37
(
x3
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x2
(
x27
x65
)
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x66
(
x1
x67
)
⟶
(
x2
(
x5
x67
x65
x66
)
(
x1
x67
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x61
(
x57
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x52
x66
x65
⟶
(
x2
(
x53
x65
x66
)
(
x1
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 x69 x70 .
x55
x70
⟶
x7
x70
x65
x66
⟶
x2
x70
(
x1
(
x63
x65
x66
)
)
⟶
x55
x67
⟶
x7
x67
x69
x68
⟶
x2
x67
(
x1
(
x63
x69
x68
)
)
⟶
(
x2
(
x6
x65
x69
x66
x68
x70
x67
)
(
x1
(
x63
(
x63
x65
x69
)
(
x63
x66
x68
)
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 x69 x70 .
x55
x70
⟶
x7
x70
x65
x66
⟶
x2
x70
(
x1
(
x63
x65
x66
)
)
⟶
x55
x67
⟶
x7
x67
x69
x68
⟶
x2
x67
(
x1
(
x63
x69
x68
)
)
⟶
(
x7
(
x6
x65
x69
x66
x68
x70
x67
)
(
x63
x65
x69
)
(
x63
x66
x68
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 x69 x70 .
x55
x70
⟶
x7
x70
x65
x66
⟶
x2
x70
(
x1
(
x63
x65
x66
)
)
⟶
x55
x67
⟶
x7
x67
x69
x68
⟶
x2
x67
(
x1
(
x63
x69
x68
)
)
⟶
(
x55
(
x6
x65
x69
x66
x68
x70
x67
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
(
x59
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
(
x59
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
(
x56
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
(
x56
x66
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x2
(
x58
x65
)
(
x1
(
x63
x65
(
x63
x65
x65
)
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x7
(
x58
x65
)
x65
(
x63
x65
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x55
(
x58
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x55
(
x51
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
(
x61
(
x51
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x60
x65
=
x63
(
x60
x67
)
(
x60
x66
)
⟶
x28
x65
(
x30
x65
x66
x67
)
(
x29
x65
x66
x67
)
=
x26
(
x39
x67
(
x30
x65
x66
x67
)
)
(
x39
x66
(
x29
x65
x66
x67
)
)
⟶
(
x65
=
x59
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x60
x65
=
x63
(
x60
x67
)
(
x60
x66
)
⟶
(
x62
(
x29
x65
x66
x67
)
(
x60
x66
)
⟶
False
)
⟶
(
x65
=
x59
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x60
x65
=
x63
(
x60
x67
)
(
x60
x66
)
⟶
(
x62
(
x30
x65
x66
x67
)
(
x60
x67
)
⟶
False
)
⟶
(
x65
=
x59
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 x69 .
x61
x69
⟶
x55
x69
⟶
x61
x68
⟶
x55
x68
⟶
x61
x67
⟶
x55
x67
⟶
x67
=
x59
x69
x68
⟶
x62
x65
(
x60
x69
)
⟶
x62
x66
(
x60
x68
)
⟶
(
x28
x67
x65
x66
=
x26
(
x39
x69
x65
)
(
x39
x68
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x65
=
x59
x67
x66
⟶
(
x60
x65
=
x63
(
x60
x67
)
(
x60
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x60
x65
=
x54
(
x60
x67
)
(
x60
x66
)
⟶
x39
x65
(
x36
x65
x66
x67
)
=
x26
(
x39
x67
(
x36
x65
x66
x67
)
)
(
x39
x66
(
x36
x65
x66
x67
)
)
⟶
(
x65
=
x56
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x60
x65
=
x54
(
x60
x67
)
(
x60
x66
)
⟶
(
x62
(
x36
x65
x66
x67
)
(
x60
x65
)
⟶
False
)
⟶
(
x65
=
x56
x67
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 x68 .
x61
x68
⟶
x55
x68
⟶
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x66
=
x56
x68
x67
⟶
x62
x65
(
x60
x66
)
⟶
(
x39
x66
x65
=
x26
(
x39
x68
x65
)
(
x39
x67
x65
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
x61
x66
⟶
x55
x66
⟶
x61
x65
⟶
x55
x65
⟶
x65
=
x56
x67
x66
⟶
(
x60
x65
=
x54
(
x60
x67
)
(
x60
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x26
x66
x65
=
x25
(
x25
x66
x65
)
(
x40
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x65
(
x1
(
x63
x66
x67
)
)
⟶
x67
=
x64
⟶
x65
=
x64
⟶
(
x7
x65
x66
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x65
(
x1
(
x63
x66
x67
)
)
⟶
x67
=
x64
⟶
x7
x65
x66
x67
⟶
(
x65
=
x64
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x66
(
x1
(
x63
x65
x67
)
)
⟶
(
x67
=
x64
⟶
False
)
⟶
x65
=
x53
x65
x66
⟶
(
x7
x66
x65
x67
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x65
(
x1
(
x63
x66
x67
)
)
⟶
(
x67
=
x64
⟶
False
)
⟶
x7
x65
x66
x67
⟶
(
x66
=
x53
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x55
x67
⟶
(
x28
x67
x65
x66
=
x39
x67
(
x26
x65
x66
)
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x2
x66
(
x1
x67
)
⟶
(
x5
x67
x65
x66
=
x5
x67
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x54
x66
x65
=
x54
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x25
x66
x65
=
x25
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x10
x66
⟶
x2
x65
(
x1
x66
)
⟶
(
x10
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
x50
x65
x66
⟶
(
x50
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
x50
x65
x66
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
x50
x65
x66
⟶
(
x0
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x10
x66
⟶
x2
x65
x66
⟶
(
x55
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x10
x66
⟶
x2
x65
x66
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
x52
x65
x66
⟶
(
x52
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
x52
x65
x66
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x61
x65
⟶
x52
x65
x66
⟶
(
x0
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
(
x10
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x50
x67
x65
⟶
x2
x66
(
x1
x67
)
⟶
(
x50
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x12
x65
⟶
x61
x65
⟶
x55
x65
⟶
(
x49
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x12
x65
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x12
x65
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x12
x66
⟶
x2
x65
(
x1
x66
)
⟶
(
x12
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x61
x67
⟶
x52
x67
x65
⟶
x2
x66
(
x1
x67
)
⟶
(
x52
x66
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x55
x65
⟶
(
x49
x65
⟶
False
)
⟶
(
x55
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x55
x65
⟶
(
x49
x65
⟶
False
)
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x61
x65
⟶
x55
x65
⟶
(
x49
x65
⟶
False
)
⟶
x12
x65
⟶
False
)
⟶
(
∀ x65 x66 .
x0
x66
⟶
x2
x65
(
x1
x66
)
⟶
x17
x65
x66
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x0
x67
⟶
x2
x65
(
x1
(
x63
x66
x67
)
)
⟶
(
x0
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
(
x9
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
x55
x65
⟶
(
x49
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
x55
x65
⟶
(
x55
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
x55
x65
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
(
x0
x66
⟶
False
)
⟶
x2
x65
(
x1
x66
)
⟶
x0
x65
⟶
(
x17
x65
x66
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 x67 .
x0
x67
⟶
x2
x65
(
x1
(
x63
x67
x66
)
)
⟶
(
x0
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
(
x38
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 .
x0
x65
⟶
x61
x65
⟶
(
x61
x65
⟶
False
)
⟶
False
)
⟶
(
∀ x65 x66 .
x61
x66
⟶
x55
x66
⟶
x2
x65
(