Search for blocks/addresses/...
Proofgold Asset
asset id
543ee2e1b781d702d6348f09e00a8ba58849498b07a928a0a765eef044787361
asset hash
63b6b948af7e6349ba9ab825672bfcf822143a48fd414e8f499f49a2d00b50a8
bday / block
35125
tx
5fd16..
preasset
doc published by
PrPhD..
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
c671c..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
∀ x6 :
ι →
ι →
ι →
ι → ο
.
∀ x7 :
ι → ι
.
∀ x8 x9 :
ι → ο
.
∀ x10 :
ι → ι
.
∀ x11 x12 :
ι → ο
.
∀ x13 x14 :
ι → ι
.
∀ x15 .
∀ x16 :
ι →
ι →
ι →
ι → ι
.
∀ x17 :
ι →
ι → ο
.
∀ x18 x19 x20 x21 x22 .
∀ x23 :
ι →
ι → ι
.
∀ x24 .
∀ x25 :
ι → ι
.
∀ x26 x27 :
ι → ο
.
∀ x28 x29 :
ι →
ι →
ι → ι
.
∀ x30 x31 .
∀ x32 :
ι → ο
.
(
∀ x33 x34 .
x32
x34
⟶
(
x34
=
x33
⟶
False
)
⟶
x32
x33
⟶
False
)
⟶
(
∀ x33 x34 .
x0
x33
x34
⟶
x32
x34
⟶
False
)
⟶
(
∀ x33 .
x32
x33
⟶
(
x33
=
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
x0
x33
x34
⟶
x2
x34
(
x1
x35
)
⟶
x32
x35
⟶
False
)
⟶
(
∀ x33 x34 x35 .
x0
x34
x35
⟶
x2
x35
(
x1
x33
)
⟶
(
x2
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x3
x34
x33
⟶
(
x2
x34
(
x1
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x2
x34
(
x1
x33
)
⟶
(
x3
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x2
x33
x34
⟶
(
x32
x34
⟶
False
)
⟶
(
x0
x33
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x0
x34
x33
⟶
(
x2
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 x37 x38 .
(
x4
x38
⟶
False
)
⟶
x8
x38
⟶
x5
x38
⟶
x2
x33
(
x7
x38
)
⟶
x2
x37
(
x7
x38
)
⟶
x2
x34
(
x7
x38
)
⟶
x2
x36
(
x7
x38
)
⟶
x2
x35
(
x7
x38
)
⟶
x6
x38
x34
x36
x33
⟶
x6
x38
x34
x36
x37
⟶
x6
x38
x33
x37
x35
⟶
(
x33
=
x37
⟶
False
)
⟶
(
x6
x38
x34
x36
x35
⟶
False
)
⟶
False
)
⟶
(
x32
x30
⟶
False
)
⟶
(
∀ x33 .
(
x3
x33
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x4
x35
⟶
False
)
⟶
x8
x35
⟶
x5
x35
⟶
x2
x33
(
x7
x35
)
⟶
x2
x34
(
x7
x35
)
⟶
(
x29
x35
x33
x34
=
x28
x35
x33
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x9
x33
⟶
False
)
⟶
x11
x33
⟶
x32
(
x10
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x9
x33
⟶
False
)
⟶
x11
x33
⟶
(
x2
(
x10
x33
)
(
x1
(
x7
x33
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x4
x33
⟶
False
)
⟶
x11
x33
⟶
x12
(
x13
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x4
x33
⟶
False
)
⟶
x11
x33
⟶
(
x2
(
x13
x33
)
(
x1
(
x7
x33
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x9
x33
⟶
False
)
⟶
x11
x33
⟶
(
x12
(
x14
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x9
x33
⟶
False
)
⟶
x11
x33
⟶
x32
(
x14
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x9
x33
⟶
False
)
⟶
x11
x33
⟶
(
x2
(
x14
x33
)
(
x1
(
x7
x33
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x27
x33
⟶
False
)
⟶
x11
x33
⟶
x26
(
x7
x33
)
⟶
False
)
⟶
(
∀ x33 .
x27
x33
⟶
x11
x33
⟶
(
x26
(
x7
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x4
x33
⟶
x11
x33
⟶
(
x12
(
x7
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x4
x33
⟶
False
)
⟶
x11
x33
⟶
x12
(
x7
x33
)
⟶
False
)
⟶
(
∀ x33 .
(
x9
x33
⟶
False
)
⟶
x11
x33
⟶
x32
(
x7
x33
)
⟶
False
)
⟶
(
∀ x33 .
x9
x33
⟶
x11
x33
⟶
(
x32
(
x7
x33
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
(
x2
(
x25
x33
)
x33
⟶
False
)
⟶
False
)
⟶
(
(
x11
x15
⟶
False
)
⟶
False
)
⟶
(
(
x5
x24
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x5
x33
⟶
(
x11
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x4
x35
⟶
False
)
⟶
x8
x35
⟶
x5
x35
⟶
x2
x33
(
x7
x35
)
⟶
x2
x34
(
x7
x35
)
⟶
(
x2
(
x29
x35
x33
x34
)
(
x1
(
x7
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x4
x35
⟶
False
)
⟶
x8
x35
⟶
x5
x35
⟶
x2
x33
(
x7
x35
)
⟶
x2
x34
(
x7
x35
)
⟶
(
x2
(
x28
x35
x33
x34
)
(
x1
(
x7
x35
)
)
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x0
(
x23
x33
x34
)
x33
⟶
(
x3
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
(
x0
(
x23
x33
x34
)
x34
⟶
False
)
⟶
(
x3
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
x3
x34
x35
⟶
x0
x33
x34
⟶
(
x0
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 .
(
x4
x36
⟶
False
)
⟶
x8
x36
⟶
x5
x36
⟶
x2
x33
(
x7
x36
)
⟶
x2
x35
(
x7
x36
)
⟶
x2
x34
(
x1
(
x7
x36
)
)
⟶
(
x6
x36
x33
x35
(
x16
x34
x35
x33
x36
)
⟶
False
)
⟶
(
x0
(
x16
x34
x35
x33
x36
)
x34
⟶
False
)
⟶
(
x34
=
x28
x36
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 .
(
x4
x36
⟶
False
)
⟶
x8
x36
⟶
x5
x36
⟶
x2
x33
(
x7
x36
)
⟶
x2
x35
(
x7
x36
)
⟶
x2
x34
(
x1
(
x7
x36
)
)
⟶
x0
(
x16
x34
x35
x33
x36
)
x34
⟶
x6
x36
x33
x35
(
x16
x34
x35
x33
x36
)
⟶
(
x34
=
x28
x36
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 .
(
x4
x36
⟶
False
)
⟶
x8
x36
⟶
x5
x36
⟶
x2
x33
(
x7
x36
)
⟶
x2
x35
(
x7
x36
)
⟶
x2
x34
(
x1
(
x7
x36
)
)
⟶
(
x2
(
x16
x34
x35
x33
x36
)
(
x7
x36
)
⟶
False
)
⟶
(
x34
=
x28
x36
x33
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 x37 .
(
x4
x37
⟶
False
)
⟶
x8
x37
⟶
x5
x37
⟶
x2
x33
(
x7
x37
)
⟶
x2
x36
(
x7
x37
)
⟶
x2
x34
(
x1
(
x7
x37
)
)
⟶
x34
=
x28
x37
x33
x36
⟶
x2
x35
(
x7
x37
)
⟶
x6
x37
x33
x36
x35
⟶
(
x0
x35
x34
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 x36 x37 .
(
x4
x37
⟶
False
)
⟶
x8
x37
⟶
x5
x37
⟶
x2
x33
(
x7
x37
)
⟶
x2
x36
(
x7
x37
)
⟶
x2
x34
(
x1
(
x7
x37
)
)
⟶
x34
=
x28
x37
x33
x36
⟶
x2
x35
(
x7
x37
)
⟶
x0
x35
x34
⟶
(
x6
x37
x33
x36
x35
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 x35 .
(
x4
x35
⟶
False
)
⟶
x8
x35
⟶
x5
x35
⟶
x2
x33
(
x7
x35
)
⟶
x2
x34
(
x7
x35
)
⟶
(
x29
x35
x33
x34
=
x29
x35
x34
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x17
x33
x31
⟶
(
x9
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x9
x33
⟶
(
x17
x33
x31
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
(
x27
x33
⟶
False
)
⟶
x4
x33
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x4
x33
⟶
(
x27
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
(
x27
x33
⟶
False
)
⟶
x27
x33
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
(
x27
x33
⟶
False
)
⟶
x9
x33
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x9
x33
⟶
(
x27
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x9
x33
⟶
(
x9
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
(
x4
x33
⟶
False
)
⟶
x9
x33
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x9
x33
⟶
(
x4
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
(
x4
x33
⟶
False
)
⟶
x9
x33
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x17
x33
x30
⟶
(
x4
x33
⟶
False
)
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
x17
x33
x30
⟶
x9
x33
⟶
False
)
⟶
(
∀ x33 .
x11
x33
⟶
(
x9
x33
⟶
False
)
⟶
x4
x33
⟶
(
x17
x33
x30
⟶
False
)
⟶
False
)
⟶
(
∀ x33 x34 .
x0
x33
x34
⟶
x0
x34
x33
⟶
False
)
⟶
(
x3
(
x29
x22
x19
x18
)
(
x29
x22
x21
x20
)
⟶
False
)
⟶
(
x19
=
x18
⟶
False
)
⟶
(
(
x0
x18
(
x29
x22
x21
x20
)
⟶
False
)
⟶
False
)
⟶
(
(
x0
x19
(
x29
x22
x21
x20
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x18
(
x7
x22
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x20
(
x7
x22
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x21
(
x7
x22
)
⟶
False
)
⟶
False
)
⟶
(
(
x2
x19
(
x7
x22
)
⟶
False
)
⟶
False
)
⟶
(
(
x5
x22
⟶
False
)
⟶
False
)
⟶
(
(
x8
x22
⟶
False
)
⟶
False
)
⟶
(
x4
x22
⟶
False
)
⟶
False
(proof)