Search for blocks/addresses/...
Proofgold Asset
asset id
54bbc756b9ac9022a5829bd53b0246c807ad4abcd7fb61d963e7e5b9771d00f4
asset hash
885732f5f9f4ae77c87a8769b9eb47ad3e95331b1b0b8ab47edb35dfbcf5861e
bday / block
2931
tx
4972a..
preasset
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
9b6e8..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι → ι
.
λ x3 x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
9e738..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
x0
=
9b6e8..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
a2722..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
x0
=
f482f..
(
9b6e8..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
0841f..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
x0
=
9b6e8..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
d1a4a..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
9b6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
5f754..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
x0
=
9b6e8..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
0db25..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
x2
x5
=
f482f..
(
f482f..
(
9b6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Theorem
021fc..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
x0
=
9b6e8..
x1
x2
x3
x4
x5
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
fcc08..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
x3
=
f482f..
(
9b6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Theorem
45260..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
x0
=
9b6e8..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
27ce6..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
x4
=
f482f..
(
9b6e8..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
8ebac..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 x8 x9 .
9b6e8..
x0
x2
x4
x6
x8
=
9b6e8..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
(proof)
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Theorem
3fc70..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 .
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x1
x7
x8
=
x2
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
x3
x7
=
x4
x7
)
⟶
9b6e8..
x0
x1
x3
x5
x6
=
9b6e8..
x0
x2
x4
x5
x6
(proof)
Definition
f1fbf..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
9b6e8..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
cae44..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
f1fbf..
(
9b6e8..
x0
x1
x2
x3
x4
)
(proof)
Theorem
778d0..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
f1fbf..
(
9b6e8..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
8024e..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
f1fbf..
(
9b6e8..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x5
)
x0
(proof)
Theorem
f93ce..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
f1fbf..
(
9b6e8..
x0
x1
x2
x3
x4
)
⟶
prim1
x3
x0
(proof)
Theorem
39510..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι → ι
.
∀ x3 x4 .
f1fbf..
(
9b6e8..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
961c9..
:
∀ x0 .
f1fbf..
x0
⟶
x0
=
9b6e8..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
81528..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
322b6..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
81528..
(
9b6e8..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
bb05a..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
5af5a..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
bb05a..
(
9b6e8..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
217fd..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Theorem
ce1e0..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
217fd..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
76fc8..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
x0
=
f482f..
(
217fd..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
4052b..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
217fd..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
5bb2c..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
217fd..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
3e1fd..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
217fd..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
38186..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
(
217fd..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
2694e..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
217fd..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
286c8..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
217fd..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
aceec..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
x0
=
217fd..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
6a558..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
217fd..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Theorem
802db..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 x8 x9 :
ι → ο
.
217fd..
x0
x2
x4
x6
x8
=
217fd..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
b2c86..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 x7 x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x1
x9
x10
=
x2
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x3
x9
x10
)
(
x4
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x5
x9
)
(
x6
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
217fd..
x0
x1
x3
x5
x7
=
217fd..
x0
x2
x4
x6
x8
(proof)
Definition
c53cd..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
x1
(
217fd..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
d4d99..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
c53cd..
(
217fd..
x0
x1
x2
x3
x4
)
(proof)
Theorem
76e7a..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 :
ι → ο
.
c53cd..
(
217fd..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
021d5..
:
∀ x0 .
c53cd..
x0
⟶
x0
=
217fd..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
d74ee..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
ec03d..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
d74ee..
(
217fd..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
bbb56..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
a1578..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
bbb56..
(
217fd..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
02b3f..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 :
ι → ο
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
x4
)
)
)
)
Theorem
26988..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
02b3f..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
4a032..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
f482f..
(
02b3f..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
cfe45..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
02b3f..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
d680e..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
02b3f..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
c6f4a..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
02b3f..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
2be22..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
(
02b3f..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
8838b..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
02b3f..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
c3940..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
02b3f..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
0ba00..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
02b3f..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
6231a..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
x4
=
f482f..
(
02b3f..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
b2875..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 :
ι → ο
.
∀ x8 x9 .
02b3f..
x0
x2
x4
x6
x8
=
02b3f..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
x8
=
x9
)
(proof)
Theorem
bf16f..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 :
ι → ο
.
∀ x7 .
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x1
x8
x9
=
x2
x8
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
iff
(
x3
x8
x9
)
(
x4
x8
x9
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
iff
(
x5
x8
)
(
x6
x8
)
)
⟶
02b3f..
x0
x1
x3
x5
x7
=
02b3f..
x0
x2
x4
x6
x7
(proof)
Definition
94799..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
∀ x6 .
prim1
x6
x2
⟶
x1
(
02b3f..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
81cf9..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
94799..
(
02b3f..
x0
x1
x2
x3
x4
)
(proof)
Theorem
32345..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
94799..
(
02b3f..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
fbb67..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 :
ι → ο
.
∀ x4 .
94799..
(
02b3f..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
c26d3..
:
∀ x0 .
94799..
x0
⟶
x0
=
02b3f..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
18c93..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
75db4..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
18c93..
(
02b3f..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
8099c..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
0ad60..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
8099c..
(
02b3f..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
50941..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 :
ι →
ι → ο
.
λ x3 x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
eb53d..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
d2155..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
Theorem
7ad4a..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
50941..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
5bcbc..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
x0
=
f482f..
(
50941..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
66838..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
50941..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x2
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
x7
(proof)
Theorem
71db9..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x1
x5
x6
=
e3162..
(
f482f..
(
50941..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
x6
(proof)
Theorem
337f1..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
50941..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
cee04..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
2b2e3..
(
f482f..
(
50941..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
31d04..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
50941..
x1
x2
x3
x4
x5
⟶
x4
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
e8f5c..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
x3
=
f482f..
(
50941..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(proof)
Theorem
599c1..
:
∀ x0 x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
x0
=
50941..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
f5703..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
x4
=
f482f..
(
50941..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
a05e5..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
∀ x6 x7 x8 x9 .
50941..
x0
x2
x4
x6
x8
=
50941..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
(proof)
Theorem
6042c..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 x6 .
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
x1
x7
x8
=
x2
x7
x8
)
⟶
(
∀ x7 .
prim1
x7
x0
⟶
∀ x8 .
prim1
x8
x0
⟶
iff
(
x3
x7
x8
)
(
x4
x7
x8
)
)
⟶
50941..
x0
x1
x3
x5
x6
=
50941..
x0
x2
x4
x5
x6
(proof)
Definition
8160a..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
∀ x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
50941..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
59175..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
∀ x2 :
ι →
ι → ο
.
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
8160a..
(
50941..
x0
x1
x2
x3
x4
)
(proof)
Theorem
628aa..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
8160a..
(
50941..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x1
x5
x6
)
x0
(proof)
Theorem
184a5..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
8160a..
(
50941..
x0
x1
x2
x3
x4
)
⟶
prim1
x3
x0
(proof)
Theorem
666f7..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 :
ι →
ι → ο
.
∀ x3 x4 .
8160a..
(
50941..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
b5a61..
:
∀ x0 .
8160a..
x0
⟶
x0
=
50941..
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
be935..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
0d265..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
be935..
(
50941..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
c758a..
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
e3162..
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
f5f40..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
prim1
x7
x1
⟶
∀ x8 .
prim1
x8
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ο
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
iff
(
x3
x8
x9
)
(
x7
x8
x9
)
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
c758a..
(
50941..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)