Search for blocks/addresses/...
Proofgold Asset
asset id
54f02cccdd5d1047fe24f04c5c666db862067480d7786be6d5438455bed6802c
asset hash
7ca1e53cad684a0ea3d87636e98bc4a1ba5632bfabded644da225dfd921377d2
bday / block
4803
tx
4b82f..
preasset
doc published by
PrGxv..
Theorem
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
explicit_Group
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
and
(
and
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x2
(
x1
x3
x4
)
=
x1
(
x1
x2
x3
)
x4
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
x0
)
(
and
(
∀ x4 .
prim1
x4
x0
⟶
and
(
x1
x3
x4
=
x4
)
(
x1
x4
x3
=
x4
)
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
x0
)
(
and
(
x1
x4
x6
=
x3
)
(
x1
x6
x4
=
x3
)
)
⟶
x5
)
⟶
x5
)
)
⟶
x2
)
⟶
x2
)
Theorem
explicit_Group_identity_unique
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x1
x2
x4
=
x4
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
x1
x4
x3
=
x4
)
⟶
x2
=
x3
(proof)
Definition
explicit_Group_identity
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
prim0
(
λ x2 .
and
(
prim1
x2
x0
)
(
and
(
∀ x3 .
prim1
x3
x0
⟶
and
(
x1
x2
x3
=
x3
)
(
x1
x3
x2
=
x3
)
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
and
(
x1
x3
x5
=
x2
)
(
x1
x5
x3
=
x2
)
)
⟶
x4
)
⟶
x4
)
)
)
Definition
explicit_Group_inverse
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 .
prim0
(
λ x3 .
and
(
prim1
x3
x0
)
(
and
(
x1
x2
x3
=
explicit_Group_identity
x0
x1
)
(
x1
x3
x2
=
explicit_Group_identity
x0
x1
)
)
)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
explicit_Group_identity_prop
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
and
(
prim1
(
explicit_Group_identity
x0
x1
)
x0
)
(
and
(
∀ x2 .
prim1
x2
x0
⟶
and
(
x1
(
explicit_Group_identity
x0
x1
)
x2
=
x2
)
(
x1
x2
(
explicit_Group_identity
x0
x1
)
=
x2
)
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
and
(
x1
x2
x4
=
explicit_Group_identity
x0
x1
)
(
x1
x4
x2
=
explicit_Group_identity
x0
x1
)
)
⟶
x3
)
⟶
x3
)
)
(proof)
Theorem
explicit_Group_identity_in
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
prim1
(
explicit_Group_identity
x0
x1
)
x0
(proof)
Theorem
explicit_Group_identity_lid
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
x1
(
explicit_Group_identity
x0
x1
)
x2
=
x2
(proof)
Theorem
explicit_Group_identity_rid
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
x1
x2
(
explicit_Group_identity
x0
x1
)
=
x2
(proof)
Theorem
explicit_Group_identity_invex
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
prim1
x4
x0
)
(
and
(
x1
x2
x4
=
explicit_Group_identity
x0
x1
)
(
x1
x4
x2
=
explicit_Group_identity
x0
x1
)
)
⟶
x3
)
⟶
x3
(proof)
Theorem
explicit_Group_inverse_prop
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
and
(
prim1
(
explicit_Group_inverse
x0
x1
x2
)
x0
)
(
and
(
x1
x2
(
explicit_Group_inverse
x0
x1
x2
)
=
explicit_Group_identity
x0
x1
)
(
x1
(
explicit_Group_inverse
x0
x1
x2
)
x2
=
explicit_Group_identity
x0
x1
)
)
(proof)
Theorem
explicit_Group_inverse_in
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
prim1
(
explicit_Group_inverse
x0
x1
x2
)
x0
(proof)
Theorem
explicit_Group_inverse_rinv
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
x1
x2
(
explicit_Group_inverse
x0
x1
x2
)
=
explicit_Group_identity
x0
x1
(proof)
Theorem
explicit_Group_inverse_linv
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
x1
(
explicit_Group_inverse
x0
x1
x2
)
x2
=
explicit_Group_identity
x0
x1
(proof)
Theorem
explicit_Group_lcancel
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x2
x3
=
x1
x2
x4
⟶
x3
=
x4
(proof)
Theorem
explicit_Group_rcancel
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x2
x4
=
x1
x3
x4
⟶
x2
=
x3
(proof)
Theorem
explicit_Group_rinv_rev
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
x3
=
explicit_Group_identity
x0
x1
⟶
x3
=
explicit_Group_inverse
x0
x1
x2
(proof)
Theorem
explicit_Group_inv_com
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
x3
=
explicit_Group_identity
x0
x1
⟶
x1
x3
x2
=
explicit_Group_identity
x0
x1
(proof)
Theorem
explicit_Group_inv_rev2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
(
x1
x2
x3
)
(
x1
x2
x3
)
=
explicit_Group_identity
x0
x1
⟶
x1
(
x1
x3
x2
)
(
x1
x3
x2
)
=
explicit_Group_identity
x0
x1
(proof)
Definition
explicit_abelian
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
x1
x2
x3
=
x1
x3
x2
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_Group_repindep_imp
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
explicit_Group
x0
x1
⟶
explicit_Group
x0
x2
(proof)
Theorem
explicit_Group_identity_repindep
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
explicit_Group
x0
x1
⟶
explicit_Group_identity
x0
x1
=
explicit_Group_identity
x0
x2
(proof)
Theorem
explicit_Group_inverse_repindep
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
explicit_Group
x0
x1
⟶
∀ x3 .
prim1
x3
x0
⟶
explicit_Group_inverse
x0
x1
x3
=
explicit_Group_inverse
x0
x2
x3
(proof)
Theorem
explicit_abelian_repindep_imp
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
explicit_abelian
x0
x1
⟶
explicit_abelian
x0
x2
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
explicit_Group_repindep
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
iff
(
explicit_Group
x0
x1
)
(
explicit_Group
x0
x2
)
(proof)
Theorem
explicit_abelian_repindep
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
iff
(
explicit_abelian
x0
x1
)
(
explicit_abelian
x0
x2
)
(proof)
Param
987b2..
:
ι
→
CT2
ι
Definition
30750..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x2
⟶
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x3
x4
x5
)
x2
)
⟶
x1
(
987b2..
x2
x3
)
)
⟶
x1
x0
Param
93c99..
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
ο
) →
ο
Definition
4f2b4..
:=
λ x0 .
and
(
30750..
x0
)
(
93c99..
x0
explicit_Group
)
Definition
eb6e9..
:=
λ x0 .
and
(
4f2b4..
x0
)
(
93c99..
x0
explicit_abelian
)
Known
7dd3b..
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
93c99..
(
987b2..
x1
x2
)
x0
=
x0
x1
x2
Known
prop_ext
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
x0
=
x1
Theorem
8a6de..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
93c99..
(
987b2..
x0
x1
)
explicit_Group
=
explicit_Group
x0
x1
(proof)
Known
b6770..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x1
x2
x3
)
x0
)
⟶
30750..
(
987b2..
x0
x1
)
Theorem
bd486..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
explicit_Group
x0
x1
⟶
4f2b4..
(
987b2..
x0
x1
)
(proof)
Theorem
f2790..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
4f2b4..
(
987b2..
x0
x1
)
⟶
explicit_Group
x0
x1
(proof)
Theorem
09c6f..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
93c99..
(
987b2..
x0
x1
)
explicit_abelian
=
explicit_abelian
x0
x1
(proof)
Theorem
aa75a..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
eb6e9..
(
987b2..
x0
x1
)
⟶
and
(
4f2b4..
(
987b2..
x0
x1
)
)
(
explicit_abelian
x0
x1
)
(proof)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
7fe8f..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 .
and
(
4f2b4..
(
987b2..
x2
x1
)
)
(
Subq
x2
x0
)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Definition
a0fbb..
:=
λ x0 .
λ x1 :
ι →
ι → ι
.
λ x2 .
∀ x3 .
prim1
x3
x0
⟶
Subq
(
94f9e..
x2
(
λ x4 .
x1
x3
(
x1
x4
(
explicit_Group_inverse
x0
x1
x3
)
)
)
)
x2
Theorem
5e4ec..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
4f2b4..
(
987b2..
x0
x1
)
⟶
Subq
x2
x0
⟶
prim1
(
explicit_Group_identity
x0
x1
)
x2
⟶
(
∀ x3 .
prim1
x3
x2
⟶
prim1
(
explicit_Group_inverse
x0
x1
x3
)
x2
)
⟶
(
∀ x3 .
prim1
x3
x2
⟶
∀ x4 .
prim1
x4
x2
⟶
prim1
(
x1
x3
x4
)
x2
)
⟶
7fe8f..
x0
x1
x2
(proof)
Theorem
7bf3c..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
4f2b4..
(
987b2..
x0
x1
)
⟶
7fe8f..
x0
x1
x2
⟶
explicit_Group_identity
x0
x1
=
explicit_Group_identity
x2
x1
(proof)
Theorem
e2bca..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
4f2b4..
(
987b2..
x0
x1
)
⟶
7fe8f..
x0
x1
x2
⟶
∀ x3 .
prim1
x3
x2
⟶
explicit_Group_inverse
x0
x1
x3
=
explicit_Group_inverse
x2
x1
x3
(proof)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
7ffca..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
4f2b4..
(
987b2..
x0
x1
)
⟶
7fe8f..
x0
x1
x2
⟶
explicit_abelian
x0
x1
⟶
a0fbb..
x0
x1
x2
(proof)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
62d26..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Group
x1
x2
⟶
Subq
x0
x1
⟶
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
a0fbb..
x1
x2
x0
⟶
a0fbb..
x1
x3
x0
(proof)
Definition
69b7e..
:=
λ x0 x1 .
and
(
and
(
30750..
x1
)
(
30750..
x0
)
)
(
93c99..
x1
(
λ x2 .
λ x3 :
ι →
ι → ι
.
93c99..
x0
(
λ x4 .
λ x5 :
ι →
ι → ι
.
and
(
and
(
x0
=
987b2..
x4
x3
)
(
4f2b4..
(
987b2..
x4
x3
)
)
)
(
Subq
x4
x2
)
)
)
)
Param
19c2c..
:
ι
→
(
ι
→
CT2
ι
) →
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
48ef8..
:
ι
Param
3097a..
:
ι
→
(
ι
→
ι
) →
ι
Definition
b5c9f..
:=
λ x0 x1 .
3097a..
x1
(
λ x2 .
x0
)
Param
4ae4a..
:
ι
→
ι
Param
f482f..
:
ι
→
ι
→
ι
Param
4a7ef..
:
ι
Definition
95464..
:=
λ x0 x1 .
19c2c..
x1
(
λ x2 .
λ x3 :
ι →
ι → ι
.
1216a..
48ef8..
(
λ x4 .
∀ x5 : ο .
(
∀ x6 .
and
(
prim1
x6
(
b5c9f..
x2
(
4ae4a..
x4
)
)
)
(
∀ x7 .
prim1
x7
(
4ae4a..
x4
)
⟶
∀ x8 .
prim1
x8
(
4ae4a..
x4
)
⟶
(
x7
=
x8
⟶
∀ x9 : ο .
x9
)
⟶
∀ x9 .
prim1
x9
(
f482f..
x0
4a7ef..
)
⟶
∀ x10 .
prim1
x10
(
f482f..
x0
4a7ef..
)
⟶
x3
(
f482f..
x6
x7
)
x9
=
x3
(
f482f..
x6
x8
)
x10
⟶
∀ x11 : ο .
x11
)
⟶
x5
)
⟶
x5
)
)
Definition
21582..
:=
λ x0 x1 .
and
(
69b7e..
x0
x1
)
(
93c99..
x1
(
λ x2 .
λ x3 :
ι →
ι → ι
.
93c99..
x0
(
λ x4 .
λ x5 :
ι →
ι → ι
.
a0fbb..
x2
x3
x4
)
)
)
Theorem
a2263..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
93c99..
(
987b2..
x0
x2
)
(
λ x5 .
λ x6 :
ι →
ι → ι
.
and
(
and
(
987b2..
x0
x2
=
987b2..
x5
x3
)
(
4f2b4..
(
987b2..
x5
x3
)
)
)
(
Subq
x5
x1
)
)
=
and
(
and
(
987b2..
x0
x2
=
987b2..
x0
x3
)
(
4f2b4..
(
987b2..
x0
x3
)
)
)
(
Subq
x0
x1
)
(proof)
Known
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
a90ae..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
987b2..
x0
x1
=
987b2..
x0
x2
Theorem
d0eb4..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
93c99..
(
987b2..
x1
x3
)
(
λ x5 .
λ x6 :
ι →
ι → ι
.
93c99..
(
987b2..
x0
x2
)
(
λ x7 .
λ x8 :
ι →
ι → ι
.
and
(
and
(
987b2..
x0
x2
=
987b2..
x7
x6
)
(
4f2b4..
(
987b2..
x7
x6
)
)
)
(
Subq
x7
x5
)
)
)
=
and
(
and
(
987b2..
x0
x2
=
987b2..
x0
x3
)
(
4f2b4..
(
987b2..
x0
x3
)
)
)
(
Subq
x0
x1
)
(proof)
Theorem
6754f..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
69b7e..
(
987b2..
x0
x2
)
(
987b2..
x1
x3
)
⟶
and
(
987b2..
x0
x2
=
987b2..
x0
x3
)
(
7fe8f..
x1
x3
x0
)
(proof)
Theorem
8f922..
:
∀ x0 x1 .
69b7e..
x0
x1
⟶
∀ x2 :
ι →
ι → ο
.
(
∀ x3 x4 .
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
prim1
x6
x4
⟶
∀ x7 .
prim1
x7
x4
⟶
prim1
(
x5
x6
x7
)
x4
)
⟶
4f2b4..
(
987b2..
x3
x5
)
⟶
Subq
x3
x4
⟶
x2
(
987b2..
x3
x5
)
(
987b2..
x4
x5
)
)
⟶
x2
x0
x1
(proof)
Theorem
41c9a..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Group
x1
x2
⟶
Subq
x0
x1
⟶
(
∀ x4 .
prim1
x4
x1
⟶
∀ x5 .
prim1
x5
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
a0fbb..
x1
x2
x0
=
a0fbb..
x1
x3
x0
(proof)
Theorem
c57da..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
93c99..
(
987b2..
x0
x2
)
(
λ x5 .
λ x6 :
ι →
ι → ι
.
a0fbb..
x1
x3
x5
)
=
a0fbb..
x1
x3
x0
(proof)
Theorem
c2f47..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
4f2b4..
(
987b2..
x1
x3
)
⟶
Subq
x0
x1
⟶
93c99..
(
987b2..
x1
x3
)
(
λ x5 .
λ x6 :
ι →
ι → ι
.
93c99..
(
987b2..
x0
x2
)
(
λ x7 .
λ x8 :
ι →
ι → ι
.
a0fbb..
x5
x6
x7
)
)
=
a0fbb..
x1
x3
x0
(proof)
Theorem
e478d..
:
∀ x0 .
eb6e9..
x0
⟶
∀ x1 .
69b7e..
x1
x0
⟶
21582..
x1
x0
(proof)
Known
31c9d..
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
987b2..
x0
x2
=
987b2..
x1
x3
⟶
and
(
x0
=
x1
)
(
∀ x4 .
prim1
x4
x0
⟶
∀ x5 .
prim1
x5
x0
⟶
x2
x4
x5
=
x3
x4
x5
)
Theorem
4970d..
:
∀ x0 x1 x2 .
69b7e..
x0
x1
⟶
69b7e..
x1
x2
⟶
69b7e..
x0
x2
(proof)
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Known
6982e..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
x1
x2
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
27474..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
(
x1
x3
)
)
⟶
prim1
(
0fc90..
x0
x2
)
(
3097a..
x0
x1
)
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Known
d8d74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
(
3097a..
x0
x1
)
⟶
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
Theorem
f37b7..
:
∀ x0 x1 .
prim1
x1
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
bij
x0
x0
(
f482f..
x2
)
)
)
⟶
∀ x2 .
prim1
x2
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x3 .
bij
x0
x0
(
f482f..
x3
)
)
)
⟶
prim1
(
0fc90..
x0
(
λ x3 .
f482f..
x2
(
f482f..
x1
x3
)
)
)
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x3 .
bij
x0
x0
(
f482f..
x3
)
)
)
(proof)
Theorem
89f56..
:
∀ x0 .
prim1
(
0fc90..
x0
(
λ x1 .
x1
)
)
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x1 .
bij
x0
x0
(
f482f..
x1
)
)
)
(proof)
Param
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Known
f775d..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
∀ x3 .
prim1
x3
x0
⟶
inv
x0
x2
(
x2
x3
)
=
x3
Known
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
prim1
x3
x1
⟶
and
(
prim1
(
inv
x0
x2
x3
)
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Theorem
4d3ca..
:
∀ x0 x1 .
prim1
x1
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
bij
x0
x0
(
f482f..
x2
)
)
)
⟶
and
(
and
(
prim1
(
0fc90..
x0
(
inv
x0
(
f482f..
x1
)
)
)
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
bij
x0
x0
(
f482f..
x2
)
)
)
)
(
0fc90..
x0
(
λ x3 .
f482f..
(
0fc90..
x0
(
inv
x0
(
f482f..
x1
)
)
)
(
f482f..
x1
x3
)
)
=
0fc90..
x0
(
λ x3 .
x3
)
)
)
(
0fc90..
x0
(
λ x3 .
f482f..
x1
(
f482f..
(
0fc90..
x0
(
inv
x0
(
f482f..
x1
)
)
)
x3
)
)
=
0fc90..
x0
(
λ x3 .
x3
)
)
(proof)
Known
6e275..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
∀ x3 .
prim1
x3
(
3097a..
x0
x1
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
f482f..
x2
x4
=
f482f..
x3
x4
)
⟶
x2
=
x3
Theorem
e418d..
:
∀ x0 .
explicit_Group
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x1 .
bij
x0
x0
(
f482f..
x1
)
)
)
(
λ x1 x2 .
0fc90..
x0
(
λ x3 .
f482f..
x2
(
f482f..
x1
x3
)
)
)
(proof)
Theorem
0e0f6..
:
∀ x0 .
explicit_Group_identity
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
bij
x0
x0
(
f482f..
x2
)
)
)
(
λ x2 x3 .
0fc90..
x0
(
λ x4 .
f482f..
x3
(
f482f..
x2
x4
)
)
)
=
0fc90..
x0
(
λ x2 .
x2
)
(proof)
Theorem
1845b..
:
∀ x0 x1 .
prim1
x1
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
bij
x0
x0
(
f482f..
x2
)
)
)
⟶
explicit_Group_inverse
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x3 .
bij
x0
x0
(
f482f..
x3
)
)
)
(
λ x3 x4 .
0fc90..
x0
(
λ x5 .
f482f..
x4
(
f482f..
x3
x5
)
)
)
x1
=
0fc90..
x0
(
inv
x0
(
f482f..
x1
)
)
(proof)
Theorem
d3010..
:
∀ x0 x1 .
Subq
x1
x0
⟶
∀ x2 .
prim1
x2
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x3 .
and
(
bij
x0
x0
(
f482f..
x3
)
)
(
∀ x4 .
prim1
x4
x1
⟶
f482f..
x3
x4
=
x4
)
)
)
⟶
∀ x3 .
prim1
x3
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x4 .
and
(
bij
x0
x0
(
f482f..
x4
)
)
(
∀ x5 .
prim1
x5
x1
⟶
f482f..
x4
x5
=
x5
)
)
)
⟶
prim1
(
0fc90..
x0
(
λ x4 .
f482f..
x3
(
f482f..
x2
x4
)
)
)
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x4 .
and
(
bij
x0
x0
(
f482f..
x4
)
)
(
∀ x5 .
prim1
x5
x1
⟶
f482f..
x4
x5
=
x5
)
)
)
(proof)
Theorem
5f4b1..
:
∀ x0 x1 .
Subq
x1
x0
⟶
7fe8f..
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
bij
x0
x0
(
f482f..
x2
)
)
)
(
λ x2 x3 .
0fc90..
x0
(
λ x4 .
f482f..
x3
(
f482f..
x2
x4
)
)
)
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
and
(
bij
x0
x0
(
f482f..
x2
)
)
(
∀ x3 .
prim1
x3
x1
⟶
f482f..
x2
x3
=
x3
)
)
)
(proof)
Definition
c7794..
:=
λ x0 .
987b2..
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x1 .
bij
x0
x0
(
f482f..
x1
)
)
)
(
λ x1 x2 .
0fc90..
x0
(
λ x3 .
f482f..
x2
(
f482f..
x1
x3
)
)
)
Definition
dae85..
:=
λ x0 x1 .
987b2..
(
1216a..
(
b5c9f..
x0
x0
)
(
λ x2 .
and
(
bij
x0
x0
(
f482f..
x2
)
)
(
∀ x3 .
prim1
x3
x1
⟶
f482f..
x2
x3
=
x3
)
)
)
(
λ x2 x3 .
0fc90..
x0
(
λ x4 .
f482f..
x3
(
f482f..
x2
x4
)
)
)
Theorem
8fe16..
:
∀ x0 .
4f2b4..
(
c7794..
x0
)
(proof)
Theorem
b4446..
:
∀ x0 x1 .
Subq
x1
x0
⟶
4f2b4..
(
dae85..
x0
x1
)
(proof)
Theorem
1a2be..
:
∀ x0 x1 .
Subq
x1
x0
⟶
69b7e..
(
dae85..
x0
x1
)
(
c7794..
x0
)
(proof)
Theorem
03e07..
:
∀ x0 x1 x2 .
Subq
x2
x1
⟶
Subq
x1
x0
⟶
69b7e..
(
dae85..
x0
x1
)
(
dae85..
x0
x2
)
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Known
3a2b6..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
52da6..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
4a7ef..
=
x0
Known
2eaee..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
11d6d..
:
∀ x0 x1 x2 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
72f77..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Known
29def..
:
∀ x0 x1 x2 x3 .
prim1
x0
x3
⟶
prim1
x1
x3
⟶
prim1
x2
x3
⟶
prim1
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x4 .
If_i
(
x4
=
4a7ef..
)
x0
(
If_i
(
x4
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
(
b5c9f..
x3
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
Known
c60fe..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
Known
530f4..
:
∀ x0 x1 x2 .
prim1
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
prim1
x1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
prim1
x2
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
(
x0
=
x1
⟶
∀ x3 : ο .
x3
)
⟶
(
x0
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
bij
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
λ x3 .
If_i
(
x3
=
4a7ef..
)
x0
(
If_i
(
x3
=
4ae4a..
4a7ef..
)
x1
x2
)
)
)
)
Known
3bafe..
:
4a7ef..
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
c8c18..
:
4a7ef..
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
f9d2f..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
2911f..
:
∀ x0 .
prim1
x0
(
4ae4a..
4a7ef..
)
⟶
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
x1
x0
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
6c4b8..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 .
and
(
and
(
4f2b4..
x3
)
(
69b7e..
x1
x3
)
)
(
not
(
21582..
x1
x3
)
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
7a200..
:=
λ x0 x1 x2 x3 .
93c99..
x0
(
λ x4 .
λ x5 :
ι →
ι → ι
.
and
(
and
(
prim1
x2
x4
)
(
prim1
x3
x4
)
)
(
prim1
(
x5
x2
(
explicit_Group_inverse
x4
x5
x3
)
)
(
f482f..
x1
4a7ef..
)
)
)
Param
quotient
:
(
ι
→
ι
→
ο
) →
ι
→
ο
Param
canonical_elt
:
(
ι
→
ι
→
ο
) →
ι
→
ι
Definition
df26d..
:=
λ x0 x1 .
19c2c..
x0
(
λ x2 .
λ x3 :
ι →
ι → ι
.
987b2..
(
1216a..
x2
(
quotient
(
7a200..
x0
x1
)
)
)
(
λ x4 x5 .
canonical_elt
(
7a200..
x0
x1
)
(
x3
x4
x5
)
)
)
Definition
70df3..
:=
λ x0 .
and
(
4f2b4..
x0
)
(
∀ x1 .
prim1
x1
(
f482f..
x0
4a7ef..
)
⟶
∀ x2 .
prim1
x2
(
f482f..
x0
4a7ef..
)
⟶
x1
=
x2
)
Definition
173cc..
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
prim1
x2
48ef8..
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
and
(
and
(
and
(
∀ x5 .
prim1
x5
(
4ae4a..
x2
)
⟶
4f2b4..
(
f482f..
x4
x5
)
)
(
∀ x5 .
prim1
x5
x2
⟶
21582..
(
f482f..
x4
x5
)
(
f482f..
x4
(
4ae4a..
x5
)
)
)
)
(
∀ x5 .
prim1
x5
x2
⟶
eb6e9..
(
df26d..
(
f482f..
x4
(
4ae4a..
x5
)
)
(
f482f..
x4
x5
)
)
)
)
(
x0
=
f482f..
x4
x2
)
)
(
70df3..
(
f482f..
x4
4a7ef..
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1