Search for blocks/addresses/...

Proofgold Asset

asset id
56c41681bc1db3b25dbcdfb304ae8f5f73c3c6dc265efdd0e7f0a7d76941ef41
asset hash
f10c87c63e2738bd788bad925df8b8b467f978532a410c75589b43b2b4ca582b
bday / block
2900
tx
465a1..
preasset
doc published by PrGxv..
Param 0fc90.. : ι(ιι) → ι
Param 4ae4a.. : ιι
Param 4a7ef.. : ι
Param If_i : οιιι
Param eb53d.. : ιCT2 ι
Param d2155.. : ι(ιιο) → ι
Param 1216a.. : ι(ιο) → ι
Definition b3c00.. := λ x0 . λ x1 : ι → ι → ι . λ x2 : ι → ι . λ x3 : ι → ι → ο . λ x4 : ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (0fc90.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (d2155.. x0 x3) (1216a.. x0 x4)))))
Param f482f.. : ιιι
Known 7d2e2.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) 4a7ef.. = x0
Theorem 52c69.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = b3c00.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 968d9.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . x0 = f482f.. (b3c00.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Param e3162.. : ιιιι
Known 504a8.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. 4a7ef..) = x1
Known 35054.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0e3162.. (eb53d.. x0 x1) x2 x3 = x1 x2 x3
Theorem e10c2.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = b3c00.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 3e80b.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (b3c00.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Known fb20c.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. 4a7ef..)) = x2
Known f22ec.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0f482f.. (0fc90.. x0 x1) x2 = x1 x2
Theorem be998.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = b3c00.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x3 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 (proof)
Theorem 4c7ff.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0x2 x5 = f482f.. (f482f.. (b3c00.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 (proof)
Param 2b2e3.. : ιιιο
Known 431f3.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x3
Known 67416.. : ∀ x0 . ∀ x1 : ι → ι → ο . ∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x02b2e3.. (d2155.. x0 x1) x2 x3 = x1 x2 x3
Theorem 73318.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = b3c00.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x4 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 x7 (proof)
Theorem c7688.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x3 x5 x6 = 2b2e3.. (f482f.. (b3c00.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 x6 (proof)
Param decode_p : ιιο
Known ffdcd.. : ∀ x0 x1 x2 x3 x4 . f482f.. (0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x6 . If_i (x6 = 4a7ef..) x0 (If_i (x6 = 4ae4a.. 4a7ef..) x1 (If_i (x6 = 4ae4a.. (4ae4a.. 4a7ef..)) x2 (If_i (x6 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) x3 x4))))) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x4
Known 931fe.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0decode_p (1216a.. x0 x1) x2 = x1 x2
Theorem efb24.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . x0 = b3c00.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x5 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 (proof)
Theorem 0702c.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . ∀ x5 . prim1 x5 x0x4 x5 = decode_p (f482f.. (b3c00.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (proof)
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known and5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem 6d916.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . ∀ x6 x7 : ι → ι → ο . ∀ x8 x9 : ι → ο . b3c00.. x0 x2 x4 x6 x8 = b3c00.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0x4 x10 = x5 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11)) (∀ x10 . prim1 x10 x0x8 x10 = x9 x10) (proof)
Param iff : οοο
Known ee7ef.. : ∀ x0 . ∀ x1 x2 : ι → ο . (∀ x3 . prim1 x3 x0iff (x1 x3) (x2 x3))1216a.. x0 x1 = 1216a.. x0 x2
Known 62ef7.. : ∀ x0 . ∀ x1 x2 : ι → ι → ο . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0iff (x1 x3 x4) (x2 x3 x4))d2155.. x0 x1 = d2155.. x0 x2
Known 4402a.. : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . prim1 x3 x0x1 x3 = x2 x3)0fc90.. x0 x1 = 0fc90.. x0 x2
Known 8fdaf.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . (∀ x3 . prim1 x3 x0∀ x4 . prim1 x4 x0x1 x3 x4 = x2 x3 x4)eb53d.. x0 x1 = eb53d.. x0 x2
Theorem b3ae1.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 x6 : ι → ι → ο . ∀ x7 x8 : ι → ο . (∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x1 x9 x10 = x2 x9 x10)(∀ x9 . prim1 x9 x0x3 x9 = x4 x9)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0iff (x5 x9 x10) (x6 x9 x10))(∀ x9 . prim1 x9 x0iff (x7 x9) (x8 x9))b3c00.. x0 x1 x3 x5 x7 = b3c00.. x0 x2 x4 x6 x8 (proof)
Definition 0ee3a.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι . (∀ x5 . prim1 x5 x2prim1 (x4 x5) x2)∀ x5 : ι → ι → ο . ∀ x6 : ι → ο . x1 (b3c00.. x2 x3 x4 x5 x6))x1 x0
Theorem 1f288.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι . (∀ x3 . prim1 x3 x0prim1 (x2 x3) x0)∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . 0ee3a.. (b3c00.. x0 x1 x2 x3 x4) (proof)
Theorem dac0d.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . 0ee3a.. (b3c00.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem 79cfc.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 : ι → ο . 0ee3a.. (b3c00.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x2 x5) x0 (proof)
Known iff_refl : ∀ x0 : ο . iff x0 x0
Theorem 0bf9e.. : ∀ x0 . 0ee3a.. x0x0 = b3c00.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) (proof)
Definition 86570.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)(ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 05b10.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)(ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)86570.. (b3c00.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 1f33c.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)(ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem c60c1.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)(ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)1f33c.. (b3c00.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 03f8d.. := λ x0 . λ x1 : ι → ι → ι . λ x2 : ι → ι . λ x3 : ι → ι → ο . λ x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (0fc90.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (d2155.. x0 x3) x4))))
Theorem b9a9a.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = 03f8d.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem a8821.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x0 = f482f.. (03f8d.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem 8c059.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = 03f8d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem b870e.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (03f8d.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem 979e8.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = 03f8d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x3 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 (proof)
Theorem 3bdd0.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . prim1 x5 x0x2 x5 = f482f.. (f482f.. (03f8d.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 (proof)
Theorem f4d0e.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = 03f8d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x4 x6 x7 = 2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 x7 (proof)
Theorem bb0e1.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x3 x5 x6 = 2b2e3.. (f482f.. (03f8d.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 x6 (proof)
Theorem 3b2a8.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . x0 = 03f8d.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 53091.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . x4 = f482f.. (03f8d.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 3d606.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . ∀ x6 x7 : ι → ι → ο . ∀ x8 x9 . 03f8d.. x0 x2 x4 x6 x8 = 03f8d.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0x4 x10 = x5 x10)) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 x10 x11 = x7 x10 x11)) (x8 = x9) (proof)
Theorem 9932c.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 x6 : ι → ι → ο . ∀ x7 . (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x1 x8 x9 = x2 x8 x9)(∀ x8 . prim1 x8 x0x3 x8 = x4 x8)(∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0iff (x5 x8 x9) (x6 x8 x9))03f8d.. x0 x1 x3 x5 x7 = 03f8d.. x0 x2 x4 x6 x7 (proof)
Definition 86731.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι . (∀ x5 . prim1 x5 x2prim1 (x4 x5) x2)∀ x5 : ι → ι → ο . ∀ x6 . prim1 x6 x2x1 (03f8d.. x2 x3 x4 x5 x6))x1 x0
Theorem a5ddf.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι . (∀ x3 . prim1 x3 x0prim1 (x2 x3) x0)∀ x3 : ι → ι → ο . ∀ x4 . prim1 x4 x086731.. (03f8d.. x0 x1 x2 x3 x4) (proof)
Theorem 8fb94.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . 86731.. (03f8d.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem 7dc73.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . 86731.. (03f8d.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x2 x5) x0 (proof)
Theorem 6910c.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ο . ∀ x4 . 86731.. (03f8d.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Theorem 62ebe.. : ∀ x0 . 86731.. x0x0 = 03f8d.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition 02c31.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)ι → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 3caf0.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)ι → ι . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)02c31.. (03f8d.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition a7b1c.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)ι → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (2b2e3.. (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 859d3.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ι → ο)ι → ο . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ι → ο . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ι → ο . (∀ x9 . prim1 x9 x1∀ x10 . prim1 x10 x1iff (x4 x9 x10) (x8 x9 x10))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)a7b1c.. (03f8d.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 3da2d.. := λ x0 . λ x1 : ι → ι → ι . λ x2 : ι → ι . λ x3 x4 : ι → ο . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (0fc90.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (1216a.. x0 x3) (1216a.. x0 x4)))))
Theorem 3d367.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . x0 = 3da2d.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 8c147.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . x0 = f482f.. (3da2d.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem 2a955.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . x0 = 3da2d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 4d5a3.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (3da2d.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem e27b3.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . x0 = 3da2d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x3 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 (proof)
Theorem d7dfb.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0x2 x5 = f482f.. (f482f.. (3da2d.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 (proof)
Theorem 70d69.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . x0 = 3da2d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 (proof)
Theorem 2e910.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0x3 x5 = decode_p (f482f.. (3da2d.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Theorem cb282.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . x0 = 3da2d.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x5 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x6 (proof)
Theorem 56e05.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . ∀ x5 . prim1 x5 x0x4 x5 = decode_p (f482f.. (3da2d.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) x5 (proof)
Theorem ccfc9.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . ∀ x6 x7 x8 x9 : ι → ο . 3da2d.. x0 x2 x4 x6 x8 = 3da2d.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0x4 x10 = x5 x10)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (∀ x10 . prim1 x10 x0x8 x10 = x9 x10) (proof)
Theorem 89ca8.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 x6 x7 x8 : ι → ο . (∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x1 x9 x10 = x2 x9 x10)(∀ x9 . prim1 x9 x0x3 x9 = x4 x9)(∀ x9 . prim1 x9 x0iff (x5 x9) (x6 x9))(∀ x9 . prim1 x9 x0iff (x7 x9) (x8 x9))3da2d.. x0 x1 x3 x5 x7 = 3da2d.. x0 x2 x4 x6 x8 (proof)
Definition 303f6.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι . (∀ x5 . prim1 x5 x2prim1 (x4 x5) x2)∀ x5 x6 : ι → ο . x1 (3da2d.. x2 x3 x4 x5 x6))x1 x0
Theorem c3e6a.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι . (∀ x3 . prim1 x3 x0prim1 (x2 x3) x0)∀ x3 x4 : ι → ο . 303f6.. (3da2d.. x0 x1 x2 x3 x4) (proof)
Theorem 48f0e.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . 303f6.. (3da2d.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem e5c90.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 x4 : ι → ο . 303f6.. (3da2d.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x2 x5) x0 (proof)
Theorem d6079.. : ∀ x0 . 303f6.. x0x0 = 3da2d.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) (proof)
Definition 3c4da.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ο)(ι → ο) → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem 25b04.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ο)(ι → ο) → ι . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)3c4da.. (3da2d.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 90bb8.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ο)(ι → ο) → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))))
Theorem f8613.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ο)(ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 x5 : ι → ο . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5)90bb8.. (3da2d.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition ae96b.. := λ x0 . λ x1 : ι → ι → ι . λ x2 : ι → ι . λ x3 : ι → ο . λ x4 . 0fc90.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (λ x5 . If_i (x5 = 4a7ef..) x0 (If_i (x5 = 4ae4a.. 4a7ef..) (eb53d.. x0 x1) (If_i (x5 = 4ae4a.. (4ae4a.. 4a7ef..)) (0fc90.. x0 x2) (If_i (x5 = 4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) (1216a.. x0 x3) x4))))
Theorem 6279e.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x0 = ae96b.. x1 x2 x3 x4 x5x1 = f482f.. x0 4a7ef.. (proof)
Theorem 186c4.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 . x0 = f482f.. (ae96b.. x0 x1 x2 x3 x4) 4a7ef.. (proof)
Theorem 31265.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x0 = ae96b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1∀ x7 . prim1 x7 x1x2 x6 x7 = e3162.. (f482f.. x0 (4ae4a.. 4a7ef..)) x6 x7 (proof)
Theorem 6599d.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . prim1 x5 x0∀ x6 . prim1 x6 x0x1 x5 x6 = e3162.. (f482f.. (ae96b.. x0 x1 x2 x3 x4) (4ae4a.. 4a7ef..)) x5 x6 (proof)
Theorem e3ab5.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x0 = ae96b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x3 x6 = f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..))) x6 (proof)
Theorem 7f647.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . prim1 x5 x0x2 x5 = f482f.. (f482f.. (ae96b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. 4a7ef..))) x5 (proof)
Theorem 34be5.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x0 = ae96b.. x1 x2 x3 x4 x5∀ x6 . prim1 x6 x1x4 x6 = decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x6 (proof)
Theorem 41c5f.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 x5 . prim1 x5 x0x3 x5 = decode_p (f482f.. (ae96b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x5 (proof)
Theorem 8dfed.. : ∀ x0 x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . x0 = ae96b.. x1 x2 x3 x4 x5x5 = f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 6afc8.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 . x4 = f482f.. (ae96b.. x0 x1 x2 x3 x4) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) (proof)
Theorem 15b36.. : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ι . ∀ x4 x5 : ι → ι . ∀ x6 x7 : ι → ο . ∀ x8 x9 . ae96b.. x0 x2 x4 x6 x8 = ae96b.. x1 x3 x5 x7 x9and (and (and (and (x0 = x1) (∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x2 x10 x11 = x3 x10 x11)) (∀ x10 . prim1 x10 x0x4 x10 = x5 x10)) (∀ x10 . prim1 x10 x0x6 x10 = x7 x10)) (x8 = x9) (proof)
Theorem 0ff82.. : ∀ x0 . ∀ x1 x2 : ι → ι → ι . ∀ x3 x4 : ι → ι . ∀ x5 x6 : ι → ο . ∀ x7 . (∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x1 x8 x9 = x2 x8 x9)(∀ x8 . prim1 x8 x0x3 x8 = x4 x8)(∀ x8 . prim1 x8 x0iff (x5 x8) (x6 x8))ae96b.. x0 x1 x3 x5 x7 = ae96b.. x0 x2 x4 x6 x7 (proof)
Definition 78340.. := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ι . (∀ x4 . prim1 x4 x2∀ x5 . prim1 x5 x2prim1 (x3 x4 x5) x2)∀ x4 : ι → ι . (∀ x5 . prim1 x5 x2prim1 (x4 x5) x2)∀ x5 : ι → ο . ∀ x6 . prim1 x6 x2x1 (ae96b.. x2 x3 x4 x5 x6))x1 x0
Theorem eae4e.. : ∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . prim1 x2 x0∀ x3 . prim1 x3 x0prim1 (x1 x2 x3) x0)∀ x2 : ι → ι . (∀ x3 . prim1 x3 x0prim1 (x2 x3) x0)∀ x3 : ι → ο . ∀ x4 . prim1 x4 x078340.. (ae96b.. x0 x1 x2 x3 x4) (proof)
Theorem 9b13b.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 . 78340.. (ae96b.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0∀ x6 . prim1 x6 x0prim1 (x1 x5 x6) x0 (proof)
Theorem e089c.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 . 78340.. (ae96b.. x0 x1 x2 x3 x4)∀ x5 . prim1 x5 x0prim1 (x2 x5) x0 (proof)
Theorem 67160.. : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 : ι → ι . ∀ x3 : ι → ο . ∀ x4 . 78340.. (ae96b.. x0 x1 x2 x3 x4)prim1 x4 x0 (proof)
Theorem d65e3.. : ∀ x0 . 78340.. x0x0 = ae96b.. (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (proof)
Definition dc25a.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ο)ι → ι . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 9ad6c.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ο)ι → ι . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)dc25a.. (ae96b.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)
Definition 4e949.. := λ x0 . λ x1 : ι → (ι → ι → ι)(ι → ι)(ι → ο)ι → ο . x1 (f482f.. x0 4a7ef..) (e3162.. (f482f.. x0 (4ae4a.. 4a7ef..))) (f482f.. (f482f.. x0 (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (f482f.. x0 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))
Theorem 79059.. : ∀ x0 : ι → (ι → ι → ι)(ι → ι)(ι → ο)ι → ο . ∀ x1 . ∀ x2 : ι → ι → ι . ∀ x3 : ι → ι . ∀ x4 : ι → ο . ∀ x5 . (∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1x2 x7 x8 = x6 x7 x8)∀ x7 : ι → ι . (∀ x8 . prim1 x8 x1x3 x8 = x7 x8)∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))x0 x1 x6 x7 x8 x5 = x0 x1 x2 x3 x4 x5)4e949.. (ae96b.. x1 x2 x3 x4 x5) x0 = x0 x1 x2 x3 x4 x5 (proof)