Search for blocks/addresses/...

Proofgold Asset

asset id
57f7e9f30673a96a1d842533dd1bd12c816804fc4aba3c34df6efa9a4291977b
asset hash
0da8011050851dfa6eb9781f2d75699c057e7eb42db1ba65e53440d58af3457b
bday / block
36396
tx
33c8c..
preasset
doc published by PrCmT..
Known df_q__df_rp__df_xneg__df_xadd__df_xmul__df_ioo__df_ioc__df_ico__df_icc__df_fz__df_fzo__df_fl__df_ceil__df_mod__df_seq__df_exp__df_fac__df_bc : ∀ x0 : ο . (wceq cq (cima cdiv (cxp cz cn))wceq crp (crab (λ x1 . wbr cc0 (cv x1) clt) (λ x1 . cr))(∀ x1 : ι → ο . wceq (cxne x1) (cif (wceq x1 cpnf) cmnf (cif (wceq x1 cmnf) cpnf (cneg x1))))wceq cxad (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . cif (wceq (cv x1) cpnf) (cif (wceq (cv x2) cmnf) cc0 cpnf) (cif (wceq (cv x1) cmnf) (cif (wceq (cv x2) cpnf) cc0 cmnf) (cif (wceq (cv x2) cpnf) cpnf (cif (wceq (cv x2) cmnf) cmnf (co (cv x1) (cv x2) caddc))))))wceq cxmu (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . cif (wo (wceq (cv x1) cc0) (wceq (cv x2) cc0)) cc0 (cif (wo (wo (wa (wbr cc0 (cv x2) clt) (wceq (cv x1) cpnf)) (wa (wbr (cv x2) cc0 clt) (wceq (cv x1) cmnf))) (wo (wa (wbr cc0 (cv x1) clt) (wceq (cv x2) cpnf)) (wa (wbr (cv x1) cc0 clt) (wceq (cv x2) cmnf)))) cpnf (cif (wo (wo (wa (wbr cc0 (cv x2) clt) (wceq (cv x1) cmnf)) (wa (wbr (cv x2) cc0 clt) (wceq (cv x1) cpnf))) (wo (wa (wbr cc0 (cv x1) clt) (wceq (cv x2) cmnf)) (wa (wbr (cv x1) cc0 clt) (wceq (cv x2) cpnf)))) cmnf (co (cv x1) (cv x2) cmul)))))wceq cioo (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . crab (λ x3 . wa (wbr (cv x1) (cv x3) clt) (wbr (cv x3) (cv x2) clt)) (λ x3 . cxr)))wceq cioc (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . crab (λ x3 . wa (wbr (cv x1) (cv x3) clt) (wbr (cv x3) (cv x2) cle)) (λ x3 . cxr)))wceq cico (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . crab (λ x3 . wa (wbr (cv x1) (cv x3) cle) (wbr (cv x3) (cv x2) clt)) (λ x3 . cxr)))wceq cicc (cmpt2 (λ x1 x2 . cxr) (λ x1 x2 . cxr) (λ x1 x2 . crab (λ x3 . wa (wbr (cv x1) (cv x3) cle) (wbr (cv x3) (cv x2) cle)) (λ x3 . cxr)))wceq cfz (cmpt2 (λ x1 x2 . cz) (λ x1 x2 . cz) (λ x1 x2 . crab (λ x3 . wa (wbr (cv x1) (cv x3) cle) (wbr (cv x3) (cv x2) cle)) (λ x3 . cz)))wceq cfzo (cmpt2 (λ x1 x2 . cz) (λ x1 x2 . cz) (λ x1 x2 . co (cv x1) (co (cv x2) c1 cmin) cfz))wceq cfl (cmpt (λ x1 . cr) (λ x1 . crio (λ x2 . wa (wbr (cv x2) (cv x1) cle) (wbr (cv x1) (co (cv x2) c1 caddc) clt)) (λ x2 . cz)))wceq cceil (cmpt (λ x1 . cr) (λ x1 . cneg (cfv (cneg (cv x1)) cfl)))wceq cmo (cmpt2 (λ x1 x2 . cr) (λ x1 x2 . crp) (λ x1 x2 . co (cv x1) (co (cv x2) (cfv (co (cv x1) (cv x2) cdiv) cfl) cmul) cmin))(∀ x1 x2 x3 : ι → ο . wceq (cseq x1 x2 x3) (cima (crdg (cmpt2 (λ x4 x5 . cvv) (λ x4 x5 . cvv) (λ x4 x5 . cop (co (cv x4) c1 caddc) (co (cv x5) (cfv (co (cv x4) c1 caddc) x2) x1))) (cop x3 (cfv x3 x2))) com))wceq cexp (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cz) (λ x1 x2 . cif (wceq (cv x2) cc0) c1 (cif (wbr cc0 (cv x2) clt) (cfv (cv x2) (cseq cmul (cxp cn (csn (cv x1))) c1)) (co c1 (cfv (cneg (cv x2)) (cseq cmul (cxp cn (csn (cv x1))) c1)) cdiv))))wceq cfa (cun (csn (cop cc0 c1)) (cseq cmul cid c1))wceq cbc (cmpt2 (λ x1 x2 . cn0) (λ x1 x2 . cz) (λ x1 x2 . cif (wcel (cv x2) (co cc0 (cv x1) cfz)) (co (cfv (cv x1) cfa) (co (cfv (co (cv x1) (cv x2) cmin) cfa) (cfv (cv x2) cfa) cmul) cdiv) cc0))x0)x0
Theorem df_q : wceq cq (cima cdiv (cxp cz cn)) (proof)
Theorem df_rp : wceq crp (crab (λ x0 . wbr cc0 (cv x0) clt) (λ x0 . cr)) (proof)
Theorem df_xneg : ∀ x0 : ι → ο . wceq (cxne x0) (cif (wceq x0 cpnf) cmnf (cif (wceq x0 cmnf) cpnf (cneg x0))) (proof)
Theorem df_xadd : wceq cxad (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . cif (wceq (cv x0) cpnf) (cif (wceq (cv x1) cmnf) cc0 cpnf) (cif (wceq (cv x0) cmnf) (cif (wceq (cv x1) cpnf) cc0 cmnf) (cif (wceq (cv x1) cpnf) cpnf (cif (wceq (cv x1) cmnf) cmnf (co (cv x0) (cv x1) caddc)))))) (proof)
Theorem df_xmul : wceq cxmu (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . cif (wo (wceq (cv x0) cc0) (wceq (cv x1) cc0)) cc0 (cif (wo (wo (wa (wbr cc0 (cv x1) clt) (wceq (cv x0) cpnf)) (wa (wbr (cv x1) cc0 clt) (wceq (cv x0) cmnf))) (wo (wa (wbr cc0 (cv x0) clt) (wceq (cv x1) cpnf)) (wa (wbr (cv x0) cc0 clt) (wceq (cv x1) cmnf)))) cpnf (cif (wo (wo (wa (wbr cc0 (cv x1) clt) (wceq (cv x0) cmnf)) (wa (wbr (cv x1) cc0 clt) (wceq (cv x0) cpnf))) (wo (wa (wbr cc0 (cv x0) clt) (wceq (cv x1) cmnf)) (wa (wbr (cv x0) cc0 clt) (wceq (cv x1) cpnf)))) cmnf (co (cv x0) (cv x1) cmul))))) (proof)
Theorem df_ioo : wceq cioo (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . crab (λ x2 . wa (wbr (cv x0) (cv x2) clt) (wbr (cv x2) (cv x1) clt)) (λ x2 . cxr))) (proof)
Theorem df_ioc : wceq cioc (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . crab (λ x2 . wa (wbr (cv x0) (cv x2) clt) (wbr (cv x2) (cv x1) cle)) (λ x2 . cxr))) (proof)
Theorem df_ico : wceq cico (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . crab (λ x2 . wa (wbr (cv x0) (cv x2) cle) (wbr (cv x2) (cv x1) clt)) (λ x2 . cxr))) (proof)
Theorem df_icc : wceq cicc (cmpt2 (λ x0 x1 . cxr) (λ x0 x1 . cxr) (λ x0 x1 . crab (λ x2 . wa (wbr (cv x0) (cv x2) cle) (wbr (cv x2) (cv x1) cle)) (λ x2 . cxr))) (proof)
Theorem df_fz : wceq cfz (cmpt2 (λ x0 x1 . cz) (λ x0 x1 . cz) (λ x0 x1 . crab (λ x2 . wa (wbr (cv x0) (cv x2) cle) (wbr (cv x2) (cv x1) cle)) (λ x2 . cz))) (proof)
Theorem df_fzo : wceq cfzo (cmpt2 (λ x0 x1 . cz) (λ x0 x1 . cz) (λ x0 x1 . co (cv x0) (co (cv x1) c1 cmin) cfz)) (proof)
Theorem df_fl : wceq cfl (cmpt (λ x0 . cr) (λ x0 . crio (λ x1 . wa (wbr (cv x1) (cv x0) cle) (wbr (cv x0) (co (cv x1) c1 caddc) clt)) (λ x1 . cz))) (proof)
Theorem df_ceil : wceq cceil (cmpt (λ x0 . cr) (λ x0 . cneg (cfv (cneg (cv x0)) cfl))) (proof)
Theorem df_mod : wceq cmo (cmpt2 (λ x0 x1 . cr) (λ x0 x1 . crp) (λ x0 x1 . co (cv x0) (co (cv x1) (cfv (co (cv x0) (cv x1) cdiv) cfl) cmul) cmin)) (proof)
Theorem df_seq : ∀ x0 x1 x2 : ι → ο . wceq (cseq x0 x1 x2) (cima (crdg (cmpt2 (λ x3 x4 . cvv) (λ x3 x4 . cvv) (λ x3 x4 . cop (co (cv x3) c1 caddc) (co (cv x4) (cfv (co (cv x3) c1 caddc) x1) x0))) (cop x2 (cfv x2 x1))) com) (proof)
Theorem df_exp : wceq cexp (cmpt2 (λ x0 x1 . cc) (λ x0 x1 . cz) (λ x0 x1 . cif (wceq (cv x1) cc0) c1 (cif (wbr cc0 (cv x1) clt) (cfv (cv x1) (cseq cmul (cxp cn (csn (cv x0))) c1)) (co c1 (cfv (cneg (cv x1)) (cseq cmul (cxp cn (csn (cv x0))) c1)) cdiv)))) (proof)
Theorem df_fac : wceq cfa (cun (csn (cop cc0 c1)) (cseq cmul cid c1)) (proof)
Theorem df_bc : wceq cbc (cmpt2 (λ x0 x1 . cn0) (λ x0 x1 . cz) (λ x0 x1 . cif (wcel (cv x1) (co cc0 (cv x0) cfz)) (co (cfv (cv x0) cfa) (co (cfv (co (cv x0) (cv x1) cmin) cfa) (cfv (cv x1) cfa) cmul) cdiv) cc0)) (proof)