Search for blocks/addresses/...

Proofgold Asset

asset id
f44cf34eabc3a5eea44ff56c58ccc20cb10983ba836da1b9db5b8e7c01b82ec2
asset hash
588d93fb88d8c8515cfbe18f09201bd8fbec77c97c1a4c5ef655e39ad762ead3
bday / block
2699
tx
c93a1..
preasset
doc published by PrGxv..
Definition and := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known andI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem and3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2 (proof)
Theorem and3E : ∀ x0 x1 x2 : ο . and (and x0 x1) x2∀ x3 : ο . (x0x1x2x3)x3 (proof)
Definition or := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known orIL : ∀ x0 x1 : ο . x0or x0 x1
Theorem or3I1 : ∀ x0 x1 x2 : ο . x0or (or x0 x1) x2 (proof)
Known orIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem or3I2 : ∀ x0 x1 x2 : ο . x1or (or x0 x1) x2 (proof)
Theorem or3I3 : ∀ x0 x1 x2 : ο . x2or (or x0 x1) x2 (proof)
Theorem or3E : ∀ x0 x1 x2 : ο . or (or x0 x1) x2∀ x3 : ο . (x0x3)(x1x3)(x2x3)x3 (proof)
Theorem and4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3 (proof)
Theorem and4E : ∀ x0 x1 x2 x3 : ο . and (and (and x0 x1) x2) x3∀ x4 : ο . (x0x1x2x3x4)x4 (proof)
Theorem or4I1 : ∀ x0 x1 x2 x3 : ο . x0or (or (or x0 x1) x2) x3 (proof)
Theorem or4I2 : ∀ x0 x1 x2 x3 : ο . x1or (or (or x0 x1) x2) x3 (proof)
Theorem or4I3 : ∀ x0 x1 x2 x3 : ο . x2or (or (or x0 x1) x2) x3 (proof)
Theorem or4I4 : ∀ x0 x1 x2 x3 : ο . x3or (or (or x0 x1) x2) x3 (proof)
Theorem or4E : ∀ x0 x1 x2 x3 : ο . or (or (or x0 x1) x2) x3∀ x4 : ο . (x0x4)(x1x4)(x2x4)(x3x4)x4 (proof)
Definition Subq := λ x0 x1 . ∀ x2 . prim1 x2 x0prim1 x2 x1
Definition iff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known 0ddd1.. : ∀ x0 x1 . (∀ x2 . iff (prim1 x2 x0) (prim1 x2 x1))x0 = x1
Known iffI : ∀ x0 x1 : ο . (x0x1)(x1x0)iff x0 x1
Theorem set_ext : ∀ x0 x1 . Subq x0 x1Subq x1 x0x0 = x1 (proof)
Theorem Subq_ref : ∀ x0 . Subq x0 x0 (proof)
Theorem Subq_tra : ∀ x0 x1 x2 . Subq x0 x1Subq x1 x2Subq x0 x2 (proof)
Definition False := ∀ x0 : ο . x0
Definition not := λ x0 : ο . x0False
Known xm : ∀ x0 : ο . or x0 (not x0)
Known FalseE : False∀ x0 : ο . x0
Theorem dneg : ∀ x0 : ο . not (not x0)x0 (proof)
Param 4a7ef.. : ι
Definition nIn := λ x0 x1 . not (prim1 x0 x1)
Known dcd83.. : ∀ x0 . nIn x0 4a7ef..
Theorem 2b26f.. : not (∀ x0 : ο . (∀ x1 . prim1 x1 4a7ef..x0)x0) (proof)
Theorem e8942.. : ∀ x0 . Subq 4a7ef.. x0 (proof)
Param c2e41.. : ιιο
Known adb47.. : ∀ x0 . ∀ x1 : ο . (∀ x2 . and (and (and (prim1 x0 x2) (∀ x3 x4 . prim1 x3 x2Subq x4 x3prim1 x4 x2)) (∀ x3 . prim1 x3 x2∀ x4 : ο . (∀ x5 . and (prim1 x5 x2) (∀ x6 . Subq x6 x3prim1 x6 x5)x4)x4)) (∀ x3 . Subq x3 x2or (c2e41.. x3 x2) (prim1 x3 x2))x1)x1
Param 1216a.. : ι(ιο) → ι
Known 492ff.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 (1216a.. x0 x1)∀ x3 : ο . (prim1 x2 x0x1 x2x3)x3
Known b2421.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 x0x1 x2prim1 x2 (1216a.. x0 x1)
Theorem b0a2d.. : ∀ x0 . ∀ x1 : ο . (∀ x2 . (∀ x3 . iff (prim1 x3 x2) (Subq x3 x0))x1)x1 (proof)
Definition e5b72.. := λ x0 . prim0 (λ x1 . ∀ x2 . iff (prim1 x2 x1) (Subq x2 x0))
Known Eps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem cf34a.. : ∀ x0 x1 . iff (prim1 x1 (e5b72.. x0)) (Subq x1 x0) (proof)
Theorem b21da.. : ∀ x0 x1 . prim1 x1 (e5b72.. x0)Subq x1 x0 (proof)
Theorem 3daee.. : ∀ x0 x1 . Subq x1 x0prim1 x1 (e5b72.. x0) (proof)
Theorem 72294.. : ∀ x0 x1 . Subq x0 x1Subq (e5b72.. x0) (e5b72.. x1) (proof)
Theorem c5d9a.. : ∀ x0 . prim1 4a7ef.. (e5b72.. x0) (proof)
Theorem 62c05.. : ∀ x0 . prim1 x0 (e5b72.. x0) (proof)
Definition 0ac37.. := λ x0 x1 . prim3 (prim2 x0 x1)
Known UnionI : ∀ x0 x1 x2 . prim1 x1 x2prim1 x2 x0prim1 x1 (prim3 x0)
Known 67787.. : ∀ x0 x1 . prim1 x0 (prim2 x0 x1)
Theorem da962.. : ∀ x0 x1 x2 . prim1 x2 x0prim1 x2 (0ac37.. x0 x1) (proof)
Known 5a932.. : ∀ x0 x1 . prim1 x1 (prim2 x0 x1)
Theorem 287ca.. : ∀ x0 x1 x2 . prim1 x2 x1prim1 x2 (0ac37.. x0 x1) (proof)
Known UnionE_impred : ∀ x0 x1 . prim1 x1 (prim3 x0)∀ x2 : ο . (∀ x3 . prim1 x1 x3prim1 x3 x0x2)x2
Known 2532b.. : ∀ x0 x1 x2 . prim1 x0 (prim2 x1 x2)or (x0 = x1) (x0 = x2)
Theorem edd11.. : ∀ x0 x1 x2 . prim1 x2 (0ac37.. x0 x1)or (prim1 x2 x0) (prim1 x2 x1) (proof)
Known 6982e.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 (1216a.. x0 x1)and (prim1 x2 x0) (x1 x2)
Theorem d0a1f.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 (1216a.. x0 x1)prim1 x2 x0 (proof)
Theorem ac5c1.. : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . prim1 x2 (1216a.. x0 x1)x1 x2 (proof)
Definition d3786.. := λ x0 x1 . 1216a.. x0 (λ x2 . prim1 x2 x1)
Theorem 2d07f.. : ∀ x0 x1 x2 . prim1 x2 x0prim1 x2 x1prim1 x2 (d3786.. x0 x1) (proof)
Theorem 3eff2.. : ∀ x0 x1 x2 . prim1 x2 (d3786.. x0 x1)and (prim1 x2 x0) (prim1 x2 x1) (proof)
Theorem 695d8.. : ∀ x0 x1 x2 . prim1 x2 (d3786.. x0 x1)prim1 x2 x0 (proof)
Theorem a5fe0.. : ∀ x0 x1 x2 . prim1 x2 (d3786.. x0 x1)prim1 x2 x1 (proof)
Param 91630.. : ιι
Definition 4ae4a.. := λ x0 . 0ac37.. x0 (91630.. x0)
Theorem c79db.. : ∀ x0 . Subq x0 (4ae4a.. x0) (proof)
Known e7a4c.. : ∀ x0 . prim1 x0 (91630.. x0)
Theorem 5faa3.. : ∀ x0 . prim1 x0 (4ae4a.. x0) (proof)
Known fead7.. : ∀ x0 x1 . prim1 x1 (91630.. x0)x1 = x0
Theorem 958ef.. : ∀ x0 x1 . prim1 x1 (4ae4a.. x0)or (prim1 x1 x0) (x1 = x0) (proof)
Known 113d7.. : ∀ x0 x1 . prim1 x1 x0∀ x2 : ο . (∀ x3 . and (prim1 x3 x0) (not (∀ x4 : ο . (∀ x5 . and (prim1 x5 x0) (prim1 x5 x3)x4)x4))x2)x2
Theorem bba3d.. : ∀ x0 x1 . prim1 x0 x1nIn x1 x0 (proof)
Theorem efbae.. : ∀ x0 . 4a7ef.. = 4ae4a.. x0∀ x1 : ο . x1 (proof)
Theorem 1b1d1.. : ∀ x0 . 4ae4a.. x0 = 4a7ef..∀ x1 : ο . x1 (proof)
Theorem 054cd.. : ∀ x0 x1 . 4ae4a.. x0 = 4ae4a.. x1x0 = x1 (proof)
Theorem 4b095.. : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)4ae4a.. x0 = 4ae4a.. x1∀ x2 : ο . x2 (proof)
Theorem f1083.. : prim1 4a7ef.. (4ae4a.. 4a7ef..) (proof)
Theorem 0b783.. : prim1 (4ae4a.. 4a7ef..) (4ae4a.. (4ae4a.. 4a7ef..)) (proof)
Theorem f336d.. : prim1 4a7ef.. (4ae4a.. (4ae4a.. 4a7ef..)) (proof)
Definition TransSet := λ x0 . ∀ x1 . prim1 x1 x0Subq x1 x0
Definition ordinal := λ x0 . and (TransSet x0) (∀ x1 . prim1 x1 x0TransSet x1)
Known andEL : ∀ x0 x1 : ο . and x0 x1x0
Theorem ordinal_TransSet : ∀ x0 . ordinal x0TransSet x0 (proof)
Known andER : ∀ x0 x1 : ο . and x0 x1x1
Theorem ordinal_In_TransSet : ∀ x0 . ordinal x0∀ x1 . prim1 x1 x0TransSet x1 (proof)
Theorem 40f7a.. : ordinal 4a7ef.. (proof)
Theorem ordinal_Hered : ∀ x0 . ordinal x0∀ x1 . prim1 x1 x0ordinal x1 (proof)
Definition ba9d8.. := λ x0 . ∀ x1 : ι → ο . x1 4a7ef..(∀ x2 . x1 x2x1 (4ae4a.. x2))x1 x0
Theorem 4c9b8.. : ba9d8.. 4a7ef.. (proof)
Theorem 2fbbc.. : ∀ x0 . ba9d8.. x0ba9d8.. (4ae4a.. x0) (proof)
Theorem 3db81.. : ba9d8.. (4ae4a.. 4a7ef..) (proof)
Theorem d7fe6.. : ba9d8.. (4ae4a.. (4ae4a.. 4a7ef..)) (proof)
Theorem 26358.. : ∀ x0 . ba9d8.. x0prim1 4a7ef.. (4ae4a.. x0) (proof)
Theorem 3238a.. : ∀ x0 . ba9d8.. x0∀ x1 . prim1 x1 x0prim1 (4ae4a.. x1) (4ae4a.. x0) (proof)
Theorem 5c211.. : ∀ x0 : ι → ο . x0 4a7ef..(∀ x1 . ba9d8.. x1x0 x1x0 (4ae4a.. x1))∀ x1 . ba9d8.. x1x0 x1 (proof)
Theorem be77e.. : ∀ x0 . ba9d8.. x0or (x0 = 4a7ef..) (∀ x1 : ο . (∀ x2 . and (ba9d8.. x2) (x0 = 4ae4a.. x2)x1)x1) (proof)
Theorem 839f4.. : ∀ x0 : ι → ο . (∀ x1 . ba9d8.. x1(∀ x2 . prim1 x2 x1x0 x2)x0 x1)∀ x1 . ba9d8.. x1x0 x1 (proof)
Theorem 10a0b.. : ∀ x0 . ba9d8.. x0∀ x1 . prim1 x1 x0ba9d8.. x1 (proof)
Theorem 8f913.. : ∀ x0 . ba9d8.. x0∀ x1 . prim1 x1 x0Subq x1 x0 (proof)
Theorem 82e3b.. : ∀ x0 . ba9d8.. x0∀ x1 . prim1 x1 (4ae4a.. x0)Subq x1 x0 (proof)
Theorem a1a9f.. : ∀ x0 . TransSet x0TransSet (4ae4a.. x0) (proof)
Theorem b72a3.. : ∀ x0 . ordinal x0ordinal (4ae4a.. x0) (proof)
Theorem f3fb5.. : ∀ x0 . ba9d8.. x0ordinal x0 (proof)
Theorem 4114a.. : ∀ x0 : ο . (∀ x1 . (∀ x2 . iff (prim1 x2 x1) (ba9d8.. x2))x0)x0 (proof)
Definition 48ef8.. := prim0 (λ x0 . ∀ x1 . iff (prim1 x1 x0) (ba9d8.. x1))
Theorem 6c085.. : ∀ x0 . iff (prim1 x0 48ef8..) (ba9d8.. x0) (proof)
Theorem c2711.. : ∀ x0 . prim1 x0 48ef8..ba9d8.. x0 (proof)
Theorem a3321.. : ∀ x0 . ba9d8.. x0prim1 x0 48ef8.. (proof)
Theorem 8ee89.. : prim1 4a7ef.. 48ef8.. (proof)
Theorem 98ac3.. : ∀ x0 . prim1 x0 48ef8..prim1 (4ae4a.. x0) 48ef8.. (proof)
Definition aa8d2.. := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . x3 4a7ef.. x1(∀ x4 . ba9d8.. x4∀ x5 . x3 x4 x5x3 (4ae4a.. x4) (prim3 x5))x3 x0 x2
Theorem 4a672.. : ∀ x0 . aa8d2.. 4a7ef.. x0 x0 (proof)
Theorem b5347.. : ∀ x0 x1 . ba9d8.. x1∀ x2 . aa8d2.. x1 x0 x2aa8d2.. (4ae4a.. x1) x0 (prim3 x2) (proof)
Theorem ac124.. : ∀ x0 . ∀ x1 : ι → ι → ο . x1 4a7ef.. x0(∀ x2 . ba9d8.. x2∀ x3 . aa8d2.. x2 x0 x3x1 x2 x3x1 (4ae4a.. x2) (prim3 x3))∀ x2 x3 . ba9d8.. x2aa8d2.. x2 x0 x3x1 x2 x3 (proof)
Theorem 5f7ef.. : ∀ x0 x1 x2 . ba9d8.. x1aa8d2.. x1 x0 x2or (and (x1 = 4a7ef..) (x2 = x0)) (∀ x3 : ο . (∀ x4 . (∀ x5 : ο . (∀ x6 . and (and (x1 = 4ae4a.. x4) (x2 = prim3 x6)) (aa8d2.. x4 x0 x6)x5)x5)x3)x3) (proof)
Theorem a87f5.. : ∀ x0 x1 . aa8d2.. 4a7ef.. x0 x1x1 = x0 (proof)
Theorem f1d4d.. : ∀ x0 x1 x2 . ba9d8.. x0aa8d2.. (4ae4a.. x0) x1 x2∀ x3 : ο . (∀ x4 . and (x2 = prim3 x4) (aa8d2.. x0 x1 x4)x3)x3 (proof)
Theorem 8312b.. : ∀ x0 x1 . ba9d8.. x1∀ x2 : ο . (∀ x3 . aa8d2.. x1 x0 x3x2)x2 (proof)
Theorem 0cbec.. : ∀ x0 x1 . ba9d8.. x1∀ x2 x3 . aa8d2.. x1 x0 x2aa8d2.. x1 x0 x3x2 = x3 (proof)
Theorem 3e6f6.. : ∀ x0 x1 . ba9d8.. x0aa8d2.. x0 x1 (prim0 (aa8d2.. x0 x1)) (proof)
Theorem 2cb0a.. : ∀ x0 . prim0 (aa8d2.. 4a7ef.. x0) = x0 (proof)
Theorem 057f4.. : ∀ x0 x1 . ba9d8.. x0prim0 (aa8d2.. (4ae4a.. x0) x1) = prim3 (prim0 (aa8d2.. x0 x1)) (proof)
Param 94f9e.. : ι(ιι) → ι
Definition 2f2ea.. := λ x0 . prim3 (94f9e.. 48ef8.. (λ x1 . prim0 (aa8d2.. x1 x0)))
Known 696c0.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 x0prim1 (x1 x2) (94f9e.. x0 x1)
Theorem 7fd4e.. : ∀ x0 x1 x2 . ba9d8.. x2prim1 x1 (prim0 (aa8d2.. x2 x0))prim1 x1 (2f2ea.. x0) (proof)
Known 8c6f6.. : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . prim1 x2 (94f9e.. x0 x1)∀ x3 : ο . (∀ x4 . prim1 x4 x0x2 = x1 x4x3)x3
Theorem 45a0f.. : ∀ x0 x1 . prim1 x1 (2f2ea.. x0)∀ x2 : ο . (∀ x3 . ba9d8.. x3prim1 x1 (prim0 (aa8d2.. x3 x0))x2)x2 (proof)
Theorem 96add.. : ∀ x0 . Subq x0 (2f2ea.. x0) (proof)
Theorem fb6d0.. : ∀ x0 . TransSet (2f2ea.. x0) (proof)
Theorem In_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . prim1 x2 x1x0 x2)x0 x1)∀ x1 . x0 x1 (proof)