Search for blocks/addresses/...
Proofgold Asset
asset id
f44cf34eabc3a5eea44ff56c58ccc20cb10983ba836da1b9db5b8e7c01b82ec2
asset hash
588d93fb88d8c8515cfbe18f09201bd8fbec77c97c1a4c5ef655e39ad762ead3
bday / block
2699
tx
c93a1..
preasset
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
(proof)
Theorem
and3E
:
∀ x0 x1 x2 : ο .
and
(
and
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
)
⟶
x3
(proof)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Theorem
or3I1
:
∀ x0 x1 x2 : ο .
x0
⟶
or
(
or
x0
x1
)
x2
(proof)
Known
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
or3I2
:
∀ x0 x1 x2 : ο .
x1
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
or3I3
:
∀ x0 x1 x2 : ο .
x2
⟶
or
(
or
x0
x1
)
x2
(proof)
Theorem
or3E
:
∀ x0 x1 x2 : ο .
or
(
or
x0
x1
)
x2
⟶
∀ x3 : ο .
(
x0
⟶
x3
)
⟶
(
x1
⟶
x3
)
⟶
(
x2
⟶
x3
)
⟶
x3
(proof)
Theorem
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
(proof)
Theorem
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
or4I1
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4I2
:
∀ x0 x1 x2 x3 : ο .
x1
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4I3
:
∀ x0 x1 x2 x3 : ο .
x2
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4I4
:
∀ x0 x1 x2 x3 : ο .
x3
⟶
or
(
or
(
or
x0
x1
)
x2
)
x3
(proof)
Theorem
or4E
:
∀ x0 x1 x2 x3 : ο .
or
(
or
(
or
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x4
)
⟶
(
x1
⟶
x4
)
⟶
(
x2
⟶
x4
)
⟶
(
x3
⟶
x4
)
⟶
x4
(proof)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
0ddd1..
:
∀ x0 x1 .
(
∀ x2 .
iff
(
prim1
x2
x0
)
(
prim1
x2
x1
)
)
⟶
x0
=
x1
Known
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
(proof)
Theorem
Subq_ref
:
∀ x0 .
Subq
x0
x0
(proof)
Theorem
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
(proof)
Param
4a7ef..
:
ι
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
2b26f..
:
not
(
∀ x0 : ο .
(
∀ x1 .
prim1
x1
4a7ef..
⟶
x0
)
⟶
x0
)
(proof)
Theorem
e8942..
:
∀ x0 .
Subq
4a7ef..
x0
(proof)
Param
c2e41..
:
ι
→
ι
→
ο
Known
adb47..
:
∀ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
and
(
and
(
prim1
x0
x2
)
(
∀ x3 x4 .
prim1
x3
x2
⟶
Subq
x4
x3
⟶
prim1
x4
x2
)
)
(
∀ x3 .
prim1
x3
x2
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x2
)
(
∀ x6 .
Subq
x6
x3
⟶
prim1
x6
x5
)
⟶
x4
)
⟶
x4
)
)
(
∀ x3 .
Subq
x3
x2
⟶
or
(
c2e41..
x3
x2
)
(
prim1
x3
x2
)
)
⟶
x1
)
⟶
x1
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Known
492ff..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
∀ x3 : ο .
(
prim1
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Theorem
b0a2d..
:
∀ x0 .
∀ x1 : ο .
(
∀ x2 .
(
∀ x3 .
iff
(
prim1
x3
x2
)
(
Subq
x3
x0
)
)
⟶
x1
)
⟶
x1
(proof)
Definition
e5b72..
:=
λ x0 .
prim0
(
λ x1 .
∀ x2 .
iff
(
prim1
x2
x1
)
(
Subq
x2
x0
)
)
Known
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
cf34a..
:
∀ x0 x1 .
iff
(
prim1
x1
(
e5b72..
x0
)
)
(
Subq
x1
x0
)
(proof)
Theorem
b21da..
:
∀ x0 x1 .
prim1
x1
(
e5b72..
x0
)
⟶
Subq
x1
x0
(proof)
Theorem
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
(proof)
Theorem
72294..
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
(
e5b72..
x0
)
(
e5b72..
x1
)
(proof)
Theorem
c5d9a..
:
∀ x0 .
prim1
4a7ef..
(
e5b72..
x0
)
(proof)
Theorem
62c05..
:
∀ x0 .
prim1
x0
(
e5b72..
x0
)
(proof)
Definition
0ac37..
:=
λ x0 x1 .
prim3
(
prim2
x0
x1
)
Known
UnionI
:
∀ x0 x1 x2 .
prim1
x1
x2
⟶
prim1
x2
x0
⟶
prim1
x1
(
prim3
x0
)
Known
67787..
:
∀ x0 x1 .
prim1
x0
(
prim2
x0
x1
)
Theorem
da962..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
(
0ac37..
x0
x1
)
(proof)
Known
5a932..
:
∀ x0 x1 .
prim1
x1
(
prim2
x0
x1
)
Theorem
287ca..
:
∀ x0 x1 x2 .
prim1
x2
x1
⟶
prim1
x2
(
0ac37..
x0
x1
)
(proof)
Known
UnionE_impred
:
∀ x0 x1 .
prim1
x1
(
prim3
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
prim1
x1
x3
⟶
prim1
x3
x0
⟶
x2
)
⟶
x2
Known
2532b..
:
∀ x0 x1 x2 .
prim1
x0
(
prim2
x1
x2
)
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Theorem
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
(proof)
Known
6982e..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
x1
x2
)
Theorem
d0a1f..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
prim1
x2
x0
(proof)
Theorem
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
(proof)
Definition
d3786..
:=
λ x0 x1 .
1216a..
x0
(
λ x2 .
prim1
x2
x1
)
Theorem
2d07f..
:
∀ x0 x1 x2 .
prim1
x2
x0
⟶
prim1
x2
x1
⟶
prim1
x2
(
d3786..
x0
x1
)
(proof)
Theorem
3eff2..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
and
(
prim1
x2
x0
)
(
prim1
x2
x1
)
(proof)
Theorem
695d8..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
prim1
x2
x0
(proof)
Theorem
a5fe0..
:
∀ x0 x1 x2 .
prim1
x2
(
d3786..
x0
x1
)
⟶
prim1
x2
x1
(proof)
Param
91630..
:
ι
→
ι
Definition
4ae4a..
:=
λ x0 .
0ac37..
x0
(
91630..
x0
)
Theorem
c79db..
:
∀ x0 .
Subq
x0
(
4ae4a..
x0
)
(proof)
Known
e7a4c..
:
∀ x0 .
prim1
x0
(
91630..
x0
)
Theorem
5faa3..
:
∀ x0 .
prim1
x0
(
4ae4a..
x0
)
(proof)
Known
fead7..
:
∀ x0 x1 .
prim1
x1
(
91630..
x0
)
⟶
x1
=
x0
Theorem
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
(proof)
Known
113d7..
:
∀ x0 x1 .
prim1
x1
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
prim1
x3
x0
)
(
not
(
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
prim1
x5
x3
)
⟶
x4
)
⟶
x4
)
)
⟶
x2
)
⟶
x2
Theorem
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
(proof)
Theorem
efbae..
:
∀ x0 .
4a7ef..
=
4ae4a..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
1b1d1..
:
∀ x0 .
4ae4a..
x0
=
4a7ef..
⟶
∀ x1 : ο .
x1
(proof)
Theorem
054cd..
:
∀ x0 x1 .
4ae4a..
x0
=
4ae4a..
x1
⟶
x0
=
x1
(proof)
Theorem
4b095..
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
4ae4a..
x0
=
4ae4a..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
(proof)
Theorem
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Known
andEL
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x0
Theorem
ordinal_TransSet
:
∀ x0 .
ordinal
x0
⟶
TransSet
x0
(proof)
Known
andER
:
∀ x0 x1 : ο .
and
x0
x1
⟶
x1
Theorem
ordinal_In_TransSet
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
(proof)
Theorem
40f7a..
:
ordinal
4a7ef..
(proof)
Theorem
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
(proof)
Definition
ba9d8..
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
4ae4a..
x2
)
)
⟶
x1
x0
Theorem
4c9b8..
:
ba9d8..
4a7ef..
(proof)
Theorem
2fbbc..
:
∀ x0 .
ba9d8..
x0
⟶
ba9d8..
(
4ae4a..
x0
)
(proof)
Theorem
3db81..
:
ba9d8..
(
4ae4a..
4a7ef..
)
(proof)
Theorem
d7fe6..
:
ba9d8..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(proof)
Theorem
26358..
:
∀ x0 .
ba9d8..
x0
⟶
prim1
4a7ef..
(
4ae4a..
x0
)
(proof)
Theorem
3238a..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
prim1
(
4ae4a..
x1
)
(
4ae4a..
x0
)
(proof)
Theorem
5c211..
:
∀ x0 :
ι → ο
.
x0
4a7ef..
⟶
(
∀ x1 .
ba9d8..
x1
⟶
x0
x1
⟶
x0
(
4ae4a..
x1
)
)
⟶
∀ x1 .
ba9d8..
x1
⟶
x0
x1
(proof)
Theorem
be77e..
:
∀ x0 .
ba9d8..
x0
⟶
or
(
x0
=
4a7ef..
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
ba9d8..
x2
)
(
x0
=
4ae4a..
x2
)
⟶
x1
)
⟶
x1
)
(proof)
Theorem
839f4..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
ba9d8..
x1
⟶
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
ba9d8..
x1
⟶
x0
x1
(proof)
Theorem
10a0b..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ba9d8..
x1
(proof)
Theorem
8f913..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
(proof)
Theorem
82e3b..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
Subq
x1
x0
(proof)
Theorem
a1a9f..
:
∀ x0 .
TransSet
x0
⟶
TransSet
(
4ae4a..
x0
)
(proof)
Theorem
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
(proof)
Theorem
f3fb5..
:
∀ x0 .
ba9d8..
x0
⟶
ordinal
x0
(proof)
Theorem
4114a..
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 .
iff
(
prim1
x2
x1
)
(
ba9d8..
x2
)
)
⟶
x0
)
⟶
x0
(proof)
Definition
48ef8..
:=
prim0
(
λ x0 .
∀ x1 .
iff
(
prim1
x1
x0
)
(
ba9d8..
x1
)
)
Theorem
6c085..
:
∀ x0 .
iff
(
prim1
x0
48ef8..
)
(
ba9d8..
x0
)
(proof)
Theorem
c2711..
:
∀ x0 .
prim1
x0
48ef8..
⟶
ba9d8..
x0
(proof)
Theorem
a3321..
:
∀ x0 .
ba9d8..
x0
⟶
prim1
x0
48ef8..
(proof)
Theorem
8ee89..
:
prim1
4a7ef..
48ef8..
(proof)
Theorem
98ac3..
:
∀ x0 .
prim1
x0
48ef8..
⟶
prim1
(
4ae4a..
x0
)
48ef8..
(proof)
Definition
aa8d2..
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
x3
4a7ef..
x1
⟶
(
∀ x4 .
ba9d8..
x4
⟶
∀ x5 .
x3
x4
x5
⟶
x3
(
4ae4a..
x4
)
(
prim3
x5
)
)
⟶
x3
x0
x2
Theorem
4a672..
:
∀ x0 .
aa8d2..
4a7ef..
x0
x0
(proof)
Theorem
b5347..
:
∀ x0 x1 .
ba9d8..
x1
⟶
∀ x2 .
aa8d2..
x1
x0
x2
⟶
aa8d2..
(
4ae4a..
x1
)
x0
(
prim3
x2
)
(proof)
Theorem
ac124..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
x1
4a7ef..
x0
⟶
(
∀ x2 .
ba9d8..
x2
⟶
∀ x3 .
aa8d2..
x2
x0
x3
⟶
x1
x2
x3
⟶
x1
(
4ae4a..
x2
)
(
prim3
x3
)
)
⟶
∀ x2 x3 .
ba9d8..
x2
⟶
aa8d2..
x2
x0
x3
⟶
x1
x2
x3
(proof)
Theorem
5f7ef..
:
∀ x0 x1 x2 .
ba9d8..
x1
⟶
aa8d2..
x1
x0
x2
⟶
or
(
and
(
x1
=
4a7ef..
)
(
x2
=
x0
)
)
(
∀ x3 : ο .
(
∀ x4 .
(
∀ x5 : ο .
(
∀ x6 .
and
(
and
(
x1
=
4ae4a..
x4
)
(
x2
=
prim3
x6
)
)
(
aa8d2..
x4
x0
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
)
(proof)
Theorem
a87f5..
:
∀ x0 x1 .
aa8d2..
4a7ef..
x0
x1
⟶
x1
=
x0
(proof)
Theorem
f1d4d..
:
∀ x0 x1 x2 .
ba9d8..
x0
⟶
aa8d2..
(
4ae4a..
x0
)
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x2
=
prim3
x4
)
(
aa8d2..
x0
x1
x4
)
⟶
x3
)
⟶
x3
(proof)
Theorem
8312b..
:
∀ x0 x1 .
ba9d8..
x1
⟶
∀ x2 : ο .
(
∀ x3 .
aa8d2..
x1
x0
x3
⟶
x2
)
⟶
x2
(proof)
Theorem
0cbec..
:
∀ x0 x1 .
ba9d8..
x1
⟶
∀ x2 x3 .
aa8d2..
x1
x0
x2
⟶
aa8d2..
x1
x0
x3
⟶
x2
=
x3
(proof)
Theorem
3e6f6..
:
∀ x0 x1 .
ba9d8..
x0
⟶
aa8d2..
x0
x1
(
prim0
(
aa8d2..
x0
x1
)
)
(proof)
Theorem
2cb0a..
:
∀ x0 .
prim0
(
aa8d2..
4a7ef..
x0
)
=
x0
(proof)
Theorem
057f4..
:
∀ x0 x1 .
ba9d8..
x0
⟶
prim0
(
aa8d2..
(
4ae4a..
x0
)
x1
)
=
prim3
(
prim0
(
aa8d2..
x0
x1
)
)
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Definition
2f2ea..
:=
λ x0 .
prim3
(
94f9e..
48ef8..
(
λ x1 .
prim0
(
aa8d2..
x1
x0
)
)
)
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Theorem
7fd4e..
:
∀ x0 x1 x2 .
ba9d8..
x2
⟶
prim1
x1
(
prim0
(
aa8d2..
x2
x0
)
)
⟶
prim1
x1
(
2f2ea..
x0
)
(proof)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Theorem
45a0f..
:
∀ x0 x1 .
prim1
x1
(
2f2ea..
x0
)
⟶
∀ x2 : ο .
(
∀ x3 .
ba9d8..
x3
⟶
prim1
x1
(
prim0
(
aa8d2..
x3
x0
)
)
⟶
x2
)
⟶
x2
(proof)
Theorem
96add..
:
∀ x0 .
Subq
x0
(
2f2ea..
x0
)
(proof)
Theorem
fb6d0..
:
∀ x0 .
TransSet
(
2f2ea..
x0
)
(proof)
Theorem
In_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
(
∀ x2 .
prim1
x2
x1
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
x0
x1
(proof)