Search for blocks/addresses/...

Proofgold Asset

asset id
8a178957038cc41b0355fdc35ffd0e85b10fa8916c528b429823327c6c764c58
asset hash
58ba4bd115245079aeebe25d6dd1833a44b9323cbfed146e3f048edcca89eab5
bday / block
48177
tx
b7c4b..
preasset
doc published by PrGM6..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)x0 x3 x4x5)x5
Definition 5a3b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)not (x0 x4 x5)x6)x6
Definition 00e19.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (5a3b5.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)not (x0 x3 x6)not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)x0 x4 x5x6)x6
Definition 6648a.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param atleastpatleastp : ιιο
Definition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3x1atleastp x0 x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)x2 x4 x5)
Param u4 : ι
Definition 86706.. := cdfa5.. u4
Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)
Known 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2x0 x1 x3x0 x1 x4x0 x2 x3x0 x2 x4x0 x3 x4(∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0 x5 x6x0 x6 x5)∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4(x5 = x6∀ x7 : ο . x7)x0 x5 x6
Known c88f0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0
Theorem d54be.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0(not (x0 x2 x12)not (x0 x2 x13)not (x0 x2 x11)not (x0 x2 x10)x0 x3 x11not (x0 x3 x10)False)(not (x0 x2 x12)not (x0 x2 x10)not (x0 x2 x9)not (x0 x2 x11)not (x0 x2 x13)x0 x3 x10not (x0 x3 x9)False)(not (x0 x2 x10)not (x0 x2 x11)x0 x2 x13not (x0 x2 x12)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)(x0 x2 x12not (x0 x2 x9)False)(x0 x2 x11not (x0 x2 x9)False)(x0 x2 x10not (x0 x2 x9)False)False
...

Known a1242.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x4 x3 x6 x5 x7
Known de43b.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x3 x5 x4 x7 x6
Theorem 8c844.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x5 x3 x7 x4 x6
...

Theorem db457.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x7 x5 x6 x3 x4
...

Theorem b6037.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x4 x6 x3 x7 x5
...

Theorem 787e8.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x6 x7 x4 x5 x3
...

Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 0d569.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0(not (x0 x2 x10)not (x0 x2 x12)not (x0 x2 x13)not (x0 x2 x9)x0 x3 x13not (x0 x3 x9)False)(x0 x2 x9not (x0 x2 x11)False)(x0 x2 x13not (x0 x2 x11)False)(not (x0 x2 x9)not (x0 x2 x13)x0 x2 x12not (x0 x2 x10)False)(x0 x2 x10not (x0 x2 x11)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known d4057.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x06648a.. x1 x2 x3 x4 x5 x6 x76648a.. x1 x2 x7 x6 x5 x4 x3
Theorem e0399.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0(x0 x2 x13not (x0 x2 x11)False)(x0 x2 x9not (x0 x2 x11)False)(x0 x2 x12not (x0 x2 x11)False)(not (x0 x2 x13)not (x0 x2 x9)x0 x2 x10not (x0 x2 x12)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Theorem 5145e.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0(x0 x2 x10not (x0 x2 x9)False)(x0 x2 x13not (x0 x2 x9)False)(not (x0 x2 x11)not (x0 x2 x10)x0 x2 x12not (x0 x2 x13)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Theorem 37ba9.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0(x0 x2 x13not (x0 x2 x12)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Theorem 16f3d.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem 314fb.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x05a3b5.. x1 x2 x3 x4 x5 x65a3b5.. x1 x2 x4 x6 x3 x5
...

Theorem bd69a.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x000e19.. x1 x2 x3 x4 x5 x6 x700e19.. x1 x2 x4 x6 x3 x5 x7
...

Known bfe59.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x05a3b5.. x1 x2 x3 x4 x5 x65a3b5.. x1 x2 x6 x4 x5 x3
Theorem 32906.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x000e19.. x1 x2 x3 x4 x5 x6 x700e19.. x1 x2 x6 x4 x5 x3 x7
...

Known 66a94.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x05a3b5.. x1 x2 x3 x4 x5 x65a3b5.. x1 x2 x3 x5 x4 x6
Theorem e2299.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x000e19.. x1 x2 x3 x4 x5 x6 x700e19.. x1 x2 x3 x5 x4 x6 x7
...

Theorem 0c442.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x000e19.. x1 x2 x3 x4 x5 x6 x700e19.. x1 x3 x4 x2 x7 x5 x6
...

Theorem 9d6b5.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x000e19.. x1 x2 x3 x4 x5 x6 x700e19.. x1 x4 x2 x3 x6 x7 x5
...

Theorem d678f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x000e19.. x1 x2 x3 x4 x5 x6 x700e19.. x1 x4 x6 x7 x2 x3 x5
...

Theorem b0a9c.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2(∀ x15 . x15x2∀ x16 . x16x2x0 x15 x16x0 x16 x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x1486706.. x2 x035fb6.. x2 x0(x0 x7 x9not (x0 x3 x9)False)(x0 x6 x9not (x0 x3 x9)False)(x0 x5 x9not (x0 x4 x9)False)False)∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2(∀ x15 . x15x2∀ x16 . x16x2x0 x15 x16x0 x16 x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x1486706.. x2 x035fb6.. x2 x0(x0 x6 x9not (x0 x4 x9)False)(x0 x8 x9not (x0 x4 x9)False)False
...

Theorem 84671.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2(∀ x15 . x15x2∀ x16 . x16x2x0 x15 x16x0 x16 x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x1486706.. x2 x035fb6.. x2 x0(x0 x7 x9not (x0 x3 x9)False)(x0 x6 x9not (x0 x3 x9)False)(x0 x5 x9not (x0 x4 x9)False)False)∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2(∀ x15 . x15x2∀ x16 . x16x2x0 x15 x16x0 x16 x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x1486706.. x2 x035fb6.. x2 x0(x0 x8 x9not (x0 x5 x9)False)False
...

Theorem 95c1f.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2(∀ x15 . x15x2∀ x16 . x16x2x0 x15 x16x0 x16 x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x1486706.. x2 x035fb6.. x2 x0(x0 x7 x9not (x0 x3 x9)False)(x0 x6 x9not (x0 x3 x9)False)(x0 x5 x9not (x0 x4 x9)False)False)∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2(∀ x15 . x15x2∀ x16 . x16x2x0 x15 x16x0 x16 x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x8 = x9∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x8 = x10∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x8 = x11∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x8 = x12∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x8 = x13∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)(x8 = x14∀ x15 : ο . x15)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x1486706.. x2 x035fb6.. x2 x0False
...

Theorem 917b0.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1(∀ x14 . x14x1∀ x15 . x15x1x0 x14 x15x0 x15 x14)(x2 = x8∀ x14 : ο . x14)(x3 = x8∀ x14 : ο . x14)(x4 = x8∀ x14 : ο . x14)(x5 = x8∀ x14 : ο . x14)(x6 = x8∀ x14 : ο . x14)(x7 = x8∀ x14 : ο . x14)(x2 = x9∀ x14 : ο . x14)(x3 = x9∀ x14 : ο . x14)(x4 = x9∀ x14 : ο . x14)(x5 = x9∀ x14 : ο . x14)(x6 = x9∀ x14 : ο . x14)(x7 = x9∀ x14 : ο . x14)(x2 = x10∀ x14 : ο . x14)(x3 = x10∀ x14 : ο . x14)(x4 = x10∀ x14 : ο . x14)(x5 = x10∀ x14 : ο . x14)(x6 = x10∀ x14 : ο . x14)(x7 = x10∀ x14 : ο . x14)(x2 = x11∀ x14 : ο . x14)(x3 = x11∀ x14 : ο . x14)(x4 = x11∀ x14 : ο . x14)(x5 = x11∀ x14 : ο . x14)(x6 = x11∀ x14 : ο . x14)(x7 = x11∀ x14 : ο . x14)(x2 = x12∀ x14 : ο . x14)(x3 = x12∀ x14 : ο . x14)(x4 = x12∀ x14 : ο . x14)(x5 = x12∀ x14 : ο . x14)(x6 = x12∀ x14 : ο . x14)(x7 = x12∀ x14 : ο . x14)(x2 = x13∀ x14 : ο . x14)(x3 = x13∀ x14 : ο . x14)(x4 = x13∀ x14 : ο . x14)(x5 = x13∀ x14 : ο . x14)(x6 = x13∀ x14 : ο . x14)(x7 = x13∀ x14 : ο . x14)00e19.. x0 x2 x3 x4 x5 x6 x76648a.. (λ x14 x15 . not (x0 x14 x15)) x8 x9 x10 x11 x12 x1386706.. x1 x035fb6.. x1 x0False
...