Search for blocks/addresses/...
Proofgold Asset
asset id
ef5393d309fc8f8eced06022f730911e81d4ac54ecdaab3a9853c58d1f3c92b0
asset hash
58cd26269829a28903da65755ed30f0e053658502aae6938d413f73fe1f845c3
bday / block
2277
tx
e311e..
preasset
doc published by
PrGxv..
Known
47706..
xmcases
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
not
x0
⟶
x1
)
⟶
x1
Known
81513..
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
dbaea..
nat_primrec_r
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
In
x5
x2
⟶
x3
x5
=
x4
x5
)
⟶
If_i
(
In
(
Union
x2
)
x2
)
(
x1
(
Union
x2
)
(
x3
(
Union
x2
)
)
)
x0
=
If_i
(
In
(
Union
x2
)
x2
)
(
x1
(
Union
x2
)
(
x4
(
Union
x2
)
)
)
x0
(proof)
Known
1c6cb..
nat_primrec_def
:
nat_primrec
=
λ x1 .
λ x2 :
ι →
ι → ι
.
In_rec_poly_i
(
λ x3 .
λ x4 :
ι → ι
.
If_i
(
In
(
Union
x3
)
x3
)
(
x2
(
Union
x3
)
(
x4
(
Union
x3
)
)
)
x1
)
Known
f78bc..
In_rec_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
(
∀ x1 .
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
In
x4
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x2
=
x0
x1
x3
)
⟶
∀ x1 .
In_rec_poly_i
x0
x1
=
x0
x1
(
In_rec_poly_i
x0
)
Known
8106d..
notI
:
∀ x0 : ο .
(
x0
⟶
False
)
⟶
not
x0
Known
2901c..
EmptyE
:
∀ x0 .
In
x0
0
⟶
False
Theorem
550dc..
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
(proof)
Known
48ae5..
Union_ordsucc_eq
:
∀ x0 .
nat_p
x0
⟶
Union
(
ordsucc
x0
)
=
x0
Known
0d2f9..
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
cf025..
ordsuccI2
:
∀ x0 .
In
x0
(
ordsucc
x0
)
Theorem
12694..
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
(proof)
Known
925ca..
add_nat_def
:
add_nat
=
λ x1 .
nat_primrec
x1
(
λ x2 .
ordsucc
)
Theorem
02169..
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
(proof)
Theorem
c13d1..
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
(proof)
Known
fed08..
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
21479..
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
56073..
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
(proof)
Theorem
47f74..
add_nat_asso
:
∀ x0 x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
add_nat
(
add_nat
x0
x1
)
x2
=
add_nat
x0
(
add_nat
x1
x2
)
(proof)
Theorem
0dc7e..
add_nat_0L
:
∀ x0 .
nat_p
x0
⟶
add_nat
0
x0
=
x0
(proof)
Theorem
54250..
add_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
(
ordsucc
x0
)
x1
=
ordsucc
(
add_nat
x0
x1
)
(proof)
Theorem
3fe1c..
add_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
add_nat
x0
x1
=
add_nat
x1
x0
(proof)
Known
08405..
nat_0
:
nat_p
0
Theorem
a7773..
ordsucc_add_nat_1
:
∀ x0 .
ordsucc
x0
=
add_nat
x0
1
(proof)
Theorem
26d71..
add_nat_1_1_2
:
add_nat
1
1
=
2
(proof)
Known
6696a..
Subq_ref
:
∀ x0 .
Subq
x0
x0
Known
2ad64..
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Known
165f2..
ordsuccI1
:
∀ x0 .
Subq
x0
(
ordsucc
x0
)
Theorem
42514..
add_nat_leq
:
∀ x0 x1 .
nat_p
x1
⟶
Subq
x0
(
add_nat
x0
x1
)
(proof)
Known
37124..
orE
:
∀ x0 x1 : ο .
or
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
e9b50..
ordsuccI1b
:
∀ x0 x1 .
In
x1
x0
⟶
In
x1
(
ordsucc
x0
)
Known
b651e..
ordinal_ordsucc_In_eq
:
∀ x0 x1 .
ordinal
x0
⟶
In
x1
x0
⟶
or
(
In
(
ordsucc
x1
)
x0
)
(
x0
=
ordsucc
x1
)
Known
08dfe..
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Theorem
ba2b3..
add_nat_ltL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
nat_p
x2
⟶
In
(
add_nat
x1
x2
)
(
add_nat
x0
x2
)
(proof)
Known
b0a90..
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
nat_p
x1
Theorem
428f7..
add_nat_ltR
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
In
x1
x0
⟶
∀ x2 .
nat_p
x2
⟶
In
(
add_nat
x2
x1
)
(
add_nat
x2
x0
)
(proof)
Known
b4776..
ordsuccE_impred
:
∀ x0 x1 .
In
x1
(
ordsucc
x0
)
⟶
∀ x2 : ο .
(
In
x1
x0
⟶
x2
)
⟶
(
x1
=
x0
⟶
x2
)
⟶
x2
Theorem
61737..
add_nat_mem_impred
:
∀ x0 x1 .
nat_p
x1
⟶
∀ x2 .
In
x2
(
add_nat
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
∀ x4 .
In
x4
x1
⟶
x2
=
add_nat
x0
x4
⟶
x3
)
⟶
x3
(proof)
Known
74738..
ordsucc_inj
:
∀ x0 x1 .
ordsucc
x0
=
ordsucc
x1
⟶
x0
=
x1
Theorem
002a9..
add_nat_cancelR
:
∀ x0 x1 x2 .
nat_p
x2
⟶
add_nat
x0
x2
=
add_nat
x1
x2
⟶
x0
=
x1
(proof)
Theorem
91fe9..
add_nat_cancelL
:
∀ x0 x1 x2 .
nat_p
x0
⟶
nat_p
x1
⟶
nat_p
x2
⟶
add_nat
x0
x1
=
add_nat
x0
x2
⟶
x1
=
x2
(proof)
Known
5f97b..
mul_nat_def
:
mul_nat
=
λ x1 .
nat_primrec
0
(
λ x2 .
add_nat
x1
)
Theorem
fad70..
mul_nat_0R
:
∀ x0 .
mul_nat
x0
0
=
0
(proof)
Theorem
a6e5c..
mul_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
mul_nat
x0
(
ordsucc
x1
)
=
add_nat
x0
(
mul_nat
x0
x1
)
(proof)
Theorem
4f633..
mul_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
mul_nat
x0
x1
)
(proof)
Theorem
0e99e..
mul_nat_0L
:
∀ x0 .
nat_p
x0
⟶
mul_nat
0
x0
=
0
(proof)
Theorem
c8db6..
mul_nat_SL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
(
ordsucc
x0
)
x1
=
add_nat
(
mul_nat
x0
x1
)
x1
(proof)
Theorem
d6c64..
mul_nat_com
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
mul_nat
x0
x1
=
mul_nat
x1
x0
(proof)
Theorem
f0f64..
mul_add_nat_distrL
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
x0
(
add_nat
x1
x2
)
=
add_nat
(
mul_nat
x0
x1
)
(
mul_nat
x0
x2
)
(proof)
Theorem
d18f8..
mul_add_nat_distrR
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
add_nat
x0
x1
)
x2
=
add_nat
(
mul_nat
x0
x2
)
(
mul_nat
x1
x2
)
(proof)
Theorem
7c82a..
mul_nat_asso
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 .
nat_p
x2
⟶
mul_nat
(
mul_nat
x0
x1
)
x2
=
mul_nat
x0
(
mul_nat
x1
x2
)
(proof)
Definition
69aae..
exp_nat
:=
λ x0 .
nat_primrec
1
(
λ x1 .
mul_nat
x0
)
Theorem
94de7..
exp_nat_0
:
∀ x0 .
69aae..
x0
0
=
1
(proof)
Theorem
f4890..
exp_nat_S
:
∀ x0 x1 .
nat_p
x1
⟶
69aae..
x0
(
ordsucc
x1
)
=
mul_nat
x0
(
69aae..
x0
x1
)
(proof)
Known
74fae..
equip_def
:
equip
=
λ x1 x2 .
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
bij
x1
x2
x4
⟶
x3
)
⟶
x3
Theorem
f2c5c..
equipI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
equip
x0
x1
(proof)
Theorem
c9b7c..
equipE_impred
:
∀ x0 x1 .
equip
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
(proof)
Known
3831d..
equip_mod_def
:
equip_mod
=
λ x1 x2 x3 .
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
or
(
and
(
equip
(
setsum
x1
x5
)
x2
)
(
equip
(
setprod
x7
x5
)
x3
)
)
(
and
(
equip
(
setsum
x2
x5
)
x1
)
(
equip
(
setprod
x7
x5
)
x3
)
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
Known
dcbd9..
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
7c02f..
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
429a0..
equip_mod_I1
:
∀ x0 x1 x2 x3 x4 .
equip
(
setsum
x0
x3
)
x1
⟶
equip
(
setprod
x4
x3
)
x2
⟶
equip_mod
x0
x1
x2
(proof)
Known
eca40..
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
dd0ac..
equip_mod_I2
:
∀ x0 x1 x2 x3 x4 .
equip
(
setsum
x1
x3
)
x0
⟶
equip
(
setprod
x4
x3
)
x2
⟶
equip_mod
x0
x1
x2
(proof)
Known
andE
andE
:
∀ x0 x1 : ο .
and
x0
x1
⟶
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Theorem
35d86..
equip_mod_E
:
∀ x0 x1 x2 .
equip_mod
x0
x1
x2
⟶
∀ x3 : ο .
(
∀ x4 x5 .
equip
(
setsum
x0
x4
)
x1
⟶
equip
(
setprod
x5
x4
)
x2
⟶
x3
)
⟶
(
∀ x4 x5 .
equip
(
setsum
x1
x4
)
x0
⟶
equip
(
setprod
x5
x4
)
x2
⟶
x3
)
⟶
x3
(proof)
Known
1796e..
injI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
In
(
x2
x3
)
x1
)
⟶
(
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
inj
x0
x1
x2
Known
367e6..
SubqE
:
∀ x0 x1 .
Subq
x0
x1
⟶
∀ x2 .
In
x2
x0
⟶
In
x2
x1
Theorem
9da0d..
inj_incl
:
∀ x0 x1 .
Subq
x0
x1
⟶
inj
x0
x1
(
λ x2 .
x2
)
(proof)
Theorem
d3779..
inj_id
:
∀ x0 .
inj
x0
x0
(
λ x1 .
x1
)
(proof)
Known
e5c63..
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x1
x2
⟶
(
∀ x3 .
In
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Theorem
505e8..
bij_id
:
∀ x0 .
bij
x0
x0
(
λ x1 .
x1
)
(proof)
Definition
ed93b..
inv
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 .
Eps_i
(
λ x3 .
and
(
In
x3
x0
)
(
x1
x3
=
x2
)
)
Known
4cb75..
Eps_i_R
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
x0
(
Eps_i
x0
)
Theorem
98109..
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
In
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
In
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
In
x3
x1
⟶
and
(
In
(
ed93b..
x0
x2
x3
)
x0
)
(
x2
(
ed93b..
x0
x2
x3
)
=
x3
)
(proof)
Theorem
03dfb..
inj_linv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
In
x3
x0
⟶
∀ x4 .
In
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
∀ x3 .
In
x3
x0
⟶
ed93b..
x0
x2
(
x2
x3
)
=
x3
(proof)
Known
80a11..
bijE_impred
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
inj
x0
x1
x2
⟶
(
∀ x4 .
In
x4
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
In
x6
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
e6daf..
injE_impred
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
inj
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
In
x4
x0
⟶
In
(
x2
x4
)
x1
)
⟶
(
∀ x4 .
In
x4
x0
⟶
∀ x5 .
In
x5
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
x3
)
⟶
x3
Theorem
14b72..
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
ed93b..
x0
x2
)
(proof)
Theorem
626f8..
inj_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
inj
x0
x1
x3
⟶
inj
x1
x2
x4
⟶
inj
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
(proof)
Theorem
43d55..
bij_comp
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
bij
x0
x1
x3
⟶
bij
x1
x2
x4
⟶
bij
x0
x2
(
λ x5 .
x4
(
x3
x5
)
)
(proof)
Theorem
54d4b..
equip_ref
:
∀ x0 .
equip
x0
x0
(proof)
Theorem
637fd..
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
(proof)
Theorem
30edc..
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
(proof)
Known
93236..
Inj0_setsum
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
(
Inj0
x2
)
(
setsum
x0
x1
)
Known
49afe..
Inj0_inj
:
∀ x0 x1 .
Inj0
x0
=
Inj0
x1
⟶
x0
=
x1
Theorem
81c90..
inj_Inj0
:
∀ x0 x1 .
inj
x0
(
setsum
x0
x1
)
Inj0
(proof)
Known
9ea3e..
Inj1_setsum
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
(
Inj1
x2
)
(
setsum
x0
x1
)
Known
0139a..
Inj1_inj
:
∀ x0 x1 .
Inj1
x0
=
Inj1
x1
⟶
x0
=
x1
Theorem
cad94..
inj_Inj1
:
∀ x0 x1 .
inj
x1
(
setsum
x0
x1
)
Inj1
(proof)
Known
351c1..
setsum_Inj_inv_impred
:
∀ x0 x1 x2 .
In
x2
(
setsum
x0
x1
)
⟶
∀ x3 :
ι → ο
.
(
∀ x4 .
In
x4
x0
⟶
x3
(
Inj0
x4
)
)
⟶
(
∀ x4 .
In
x4
x1
⟶
x3
(
Inj1
x4
)
)
⟶
x3
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
c9834..
equip_setsum_Empty_R
:
∀ x0 .
equip
(
setsum
x0
0
)
x0
(proof)
Known
535f2..
set_ext_2
:
∀ x0 x1 .
(
∀ x2 .
In
x2
x0
⟶
In
x2
x1
)
⟶
(
∀ x2 .
In
x2
x1
⟶
In
x2
x0
)
⟶
x0
=
x1
Known
0ce8c..
binunionI1
:
∀ x0 x1 x2 .
In
x2
x0
⟶
In
x2
(
binunion
x0
x1
)
Known
f9974..
binunionE_cases
:
∀ x0 x1 x2 .
In
x2
(
binunion
x0
x1
)
⟶
∀ x3 : ο .
(
In
x2
x0
⟶
x3
)
⟶
(
In
x2
x1
⟶
x3
)
⟶
x3
Known
eb8b4..
binunionI2
:
∀ x0 x1 x2 .
In
x2
x1
⟶
In
x2
(
binunion
x0
x1
)
Theorem
976df..
setsum_binunion_distrR
:
∀ x0 x1 x2 .
setsum
x0
(
binunion
x1
x2
)
=
binunion
(
setsum
x0
x1
)
(
setsum
x0
x2
)
(proof)
Known
34a93..
combine_funcs_eq1
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj0
x4
)
=
x2
x4
Known
d805a..
combine_funcs_eq2
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
combine_funcs
x0
x1
x2
x3
(
Inj1
x4
)
=
x3
x4
Known
24526..
nIn_E2
:
∀ x0 x1 .
nIn
x0
x1
⟶
In
x0
x1
⟶
False
Known
e85f6..
In_irref
:
∀ x0 .
nIn
x0
x0
Theorem
4d857..
equip_setsum_add_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
equip
(
setsum
x0
x1
)
(
add_nat
x0
x1
)
(proof)
Theorem
95550..
combine_funcs_fun
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
In
x5
x0
⟶
In
(
x3
x5
)
x2
)
⟶
(
∀ x5 .
In
x5
x1
⟶
In
(
x4
x5
)
x2
)
⟶
∀ x5 .
In
x5
(
setsum
x0
x1
)
⟶
In
(
combine_funcs
x0
x1
x3
x4
x5
)
x2
(proof)
Known
notE
notE
:
∀ x0 : ο .
not
x0
⟶
x0
⟶
False
Theorem
9d9c7..
combine_funcs_inj
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι → ι
.
inj
x0
x2
x3
⟶
inj
x1
x2
x4
⟶
(
∀ x5 .
In
x5
x0
⟶
∀ x6 .
In
x6
x1
⟶
not
(
x3
x5
=
x4
x6
)
)
⟶
inj
(
setsum
x0
x1
)
x2
(
combine_funcs
x0
x1
x3
x4
)
(proof)
Theorem
81c90..
inj_Inj0
:
∀ x0 x1 .
inj
x0
(
setsum
x0
x1
)
Inj0
(proof)
Theorem
cad94..
inj_Inj1
:
∀ x0 x1 .
inj
x1
(
setsum
x0
x1
)
Inj1
(proof)
Known
efcec..
Inj0_Inj1_neq
:
∀ x0 x1 .
not
(
Inj0
x0
=
Inj1
x1
)
Theorem
0b5e2..
equip_setsum_cong
:
∀ x0 x1 x2 x3 .
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
setsum
x0
x1
)
(
setsum
x2
x3
)
(proof)
Theorem
56707..
equip_setsum_add_nat_2
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 x3 .
equip
x2
x0
⟶
equip
x3
x1
⟶
equip
(
setsum
x2
x3
)
(
add_nat
x0
x1
)
(proof)