Search for blocks/addresses/...
Proofgold Asset
asset id
5f7d59e850d6a0e84021ea4e1c86e4823f4ddae9af5d9a65387550955b3cf761
asset hash
cc6503fd7d3d3e951012f0ddce4753cb566f21eeb8a997520e82caad3166860f
bday / block
4948
tx
f15ba..
preasset
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
explicit_Field_minus
explicit_Field_minus
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
explicit_Reals_transfer
explicit_Reals_transfer
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 x7 x8 .
∀ x9 x10 :
ι →
ι → ι
.
∀ x11 :
ι →
ι → ο
.
∀ x12 :
ι → ι
.
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
bij
x0
x6
x12
⟶
x12
x1
=
x7
⟶
x12
x2
=
x8
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x3
x13
x14
)
=
x9
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
x12
(
x4
x13
x14
)
=
x10
(
x12
x13
)
(
x12
x14
)
)
⟶
(
∀ x13 .
x13
∈
x0
⟶
∀ x14 .
x14
∈
x0
⟶
iff
(
x5
x13
x14
)
(
x11
(
x12
x13
)
(
x12
x14
)
)
)
⟶
explicit_Reals
x6
x7
x8
x9
x10
x11
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
9de77..
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι →
ι → ι
.
∀ x7 .
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
x8
x9
=
x6
x10
x11
⟶
and
(
x8
=
x10
)
(
x9
=
x11
)
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x3
x8
x9
=
x3
x9
x8
)
⟶
x1
∈
x0
⟶
(
∀ x8 .
x8
∈
x0
⟶
x3
x1
x8
=
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x8
x9
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
=
x8
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x6
x8
x1
∈
{x9 ∈
x7
|
x6
(
prim0
(
λ x11 .
and
(
x11
∈
x0
)
(
∀ x12 : ο .
(
∀ x13 .
and
(
x13
∈
x0
)
(
x9
=
x6
x11
x13
)
⟶
x12
)
⟶
x12
)
)
)
x1
=
x9
}
)
⟶
(
∀ x8 .
x8
∈
x7
⟶
prim0
(
λ x9 .
and
(
x9
∈
x0
)
(
∀ x10 : ο .
(
∀ x11 .
and
(
x11
∈
x0
)
(
x8
=
x6
x9
x11
)
⟶
x10
)
⟶
x10
)
)
∈
x0
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
x3
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
=
x6
(
x3
x8
x10
)
(
x3
x9
x11
)
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x6
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x8
x9
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x10
x11
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x10
x11
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
)
(
x4
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
x6
x8
x9
=
x6
(
prim0
(
λ x15 .
and
(
x15
∈
x0
)
(
∀ x16 : ο .
(
∀ x17 .
and
(
x17
∈
x0
)
(
x6
x8
x9
=
x6
x15
x17
)
⟶
x16
)
⟶
x16
)
)
)
x13
)
)
)
(
prim0
(
λ x13 .
and
(
x13
∈
x0
)
(
∀ x14 : ο .
(
∀ x15 .
and
(
x15
∈
x0
)
(
x6
x10
x11
=
x6
x13
x15
)
⟶
x14
)
⟶
x14
)
)
)
)
)
=
x6
(
x3
(
x4
x8
x10
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
x9
x11
)
)
)
(
x3
(
x4
x8
x11
)
(
x4
x9
x10
)
)
)
⟶
explicit_Field_minus
x0
x1
x2
x3
x4
x1
=
x1
⟶
(
∀ x8 .
x8
∈
x0
⟶
x4
x1
x8
=
x1
)
⟶
(
∀ x8 .
x8
∈
x0
⟶
x4
x8
x1
=
x1
)
⟶
explicit_Reals
{x8 ∈
x7
|
x6
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
x1
=
x8
}
(
x6
x1
x1
)
(
x6
x2
x1
)
(
λ x8 x9 .
x6
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
x3
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
(
λ x8 x9 .
x6
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(
explicit_Field_minus
x0
x1
x2
x3
x4
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
)
)
(
x3
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x9
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x9
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
)
(
x4
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
x8
=
x6
(
prim0
(
λ x12 .
and
(
x12
∈
x0
)
(
∀ x13 : ο .
(
∀ x14 .
and
(
x14
∈
x0
)
(
x8
=
x6
x12
x14
)
⟶
x13
)
⟶
x13
)
)
)
x10
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
)
)
(
λ x8 x9 .
x5
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x8
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
(
prim0
(
λ x10 .
and
(
x10
∈
x0
)
(
∀ x11 : ο .
(
∀ x12 .
and
(
x12
∈
x0
)
(
x9
=
x6
x10
x12
)
⟶
x11
)
⟶
x11
)
)
)
)
(proof)