Search for blocks/addresses/...

Proofgold Asset

asset id
6049b4b8c745135f89d99d7cbc5d2a5c38fc2d5486b26f3e5528d33ea9be31ae
asset hash
c97efc494608e2699ba15a5c9fbc4ed153805d119e3bcae3487a328db5c6de99
bday / block
36875
tx
1e2e6..
preasset
doc published by Pr4zB..
Param 4402e.. : ι(ιιο) → ο
Param cf2df.. : ι(ιιο) → ο
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param setminussetminus : ιιι
Param SingSing : ιι
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition 62523.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)not (x0 x3 x5)x0 x4 x5x6)x6
Definition a542b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (62523.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)not (x0 x2 x6)x0 x3 x6not (x0 x4 x6)x0 x5 x6x7)x7
Definition 2fb86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (a542b.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7not (x0 x3 x7)not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition 14b71.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (2fb86.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)x0 x2 x8not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 286f8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (14b71.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)x0 x3 x9x0 x4 x9not (x0 x5 x9)not (x0 x6 x9)x0 x7 x9not (x0 x8 x9)x10)x10
Definition 68d0b.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (286f8.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10x0 x2 x10x0 x3 x10x0 x4 x10not (x0 x5 x10)not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition 2de86.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)not (x0 x1 x6)x0 x2 x6not (x0 x3 x6)x0 x4 x6not (x0 x5 x6)x7)x7
Definition 796c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7not (x0 x2 x7)x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition d7cce.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)not (x0 x2 x8)not (x0 x3 x8)x0 x4 x8not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition ab042.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d7cce.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)x0 x1 x9x0 x2 x9x0 x3 x9not (x0 x4 x9)not (x0 x5 x9)not (x0 x6 x9)not (x0 x7 x9)x0 x8 x9x10)x10
Definition 69a33.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (ab042.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 99ce8.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8x0 x2 x8not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 79af9.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (99ce8.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)not (x0 x3 x9)x0 x4 x9not (x0 x5 x9)not (x0 x6 x9)not (x0 x7 x9)x0 x8 x9x10)x10
Definition 4c67f.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (79af9.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 24120.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d7cce.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9not (x0 x6 x9)not (x0 x7 x9)x0 x8 x9x10)x10
Definition 94fe6.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (24120.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 3819d.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (2de86.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition fd1bb.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (3819d.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)x0 x1 x8not (x0 x2 x8)not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition 6e81c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (fd1bb.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9x0 x3 x9not (x0 x4 x9)not (x0 x5 x9)not (x0 x6 x9)not (x0 x7 x9)x0 x8 x9x10)x10
Definition f0c46.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (6e81c.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)not (x0 x1 x10)not (x0 x2 x10)x0 x3 x10not (x0 x4 x10)not (x0 x5 x10)x0 x6 x10not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 0c647.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 . ∀ x9 : ο . (796c4.. x0 x1 x2 x3 x4 x5 x6 x7(x1 = x8∀ x10 : ο . x10)(x2 = x8∀ x10 : ο . x10)(x3 = x8∀ x10 : ο . x10)(x4 = x8∀ x10 : ο . x10)(x5 = x8∀ x10 : ο . x10)(x6 = x8∀ x10 : ο . x10)(x7 = x8∀ x10 : ο . x10)not (x0 x1 x8)x0 x2 x8not (x0 x3 x8)not (x0 x4 x8)not (x0 x5 x8)not (x0 x6 x8)not (x0 x7 x8)x9)x9
Definition e2fd7.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (0c647.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)not (x0 x3 x9)x0 x4 x9not (x0 x5 x9)not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition 4679c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (e2fd7.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition f7902.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (d7cce.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)x0 x2 x9not (x0 x3 x9)not (x0 x4 x9)x0 x5 x9not (x0 x6 x9)x0 x7 x9x0 x8 x9x10)x10
Definition 24ede.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (f7902.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)x0 x5 x10not (x0 x6 x10)not (x0 x7 x10)not (x0 x8 x10)not (x0 x9 x10)x11)x11
Definition 576d3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (24120.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)not (x0 x1 x10)not (x0 x2 x10)x0 x3 x10not (x0 x4 x10)not (x0 x5 x10)not (x0 x6 x10)not (x0 x7 x10)x0 x8 x10not (x0 x9 x10)x11)x11
Definition 150dd.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 . ∀ x10 : ο . (14b71.. x0 x1 x2 x3 x4 x5 x6 x7 x8(x1 = x9∀ x11 : ο . x11)(x2 = x9∀ x11 : ο . x11)(x3 = x9∀ x11 : ο . x11)(x4 = x9∀ x11 : ο . x11)(x5 = x9∀ x11 : ο . x11)(x6 = x9∀ x11 : ο . x11)(x7 = x9∀ x11 : ο . x11)(x8 = x9∀ x11 : ο . x11)not (x0 x1 x9)not (x0 x2 x9)x0 x3 x9x0 x4 x9not (x0 x5 x9)not (x0 x6 x9)not (x0 x7 x9)not (x0 x8 x9)x10)x10
Definition 558af.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . ∀ x11 : ο . (150dd.. x0 x1 x2 x3 x4 x5 x6 x7 x8 x9(x1 = x10∀ x12 : ο . x12)(x2 = x10∀ x12 : ο . x12)(x3 = x10∀ x12 : ο . x12)(x4 = x10∀ x12 : ο . x12)(x5 = x10∀ x12 : ο . x12)(x6 = x10∀ x12 : ο . x12)(x7 = x10∀ x12 : ο . x12)(x8 = x10∀ x12 : ο . x12)(x9 = x10∀ x12 : ο . x12)x0 x1 x10not (x0 x2 x10)not (x0 x3 x10)not (x0 x4 x10)not (x0 x5 x10)not (x0 x6 x10)not (x0 x7 x10)x0 x8 x10x0 x9 x10x11)x11
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known da85b.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0286f8.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12∀ x13 : ο . (x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)not (x2 x12 x3)x13)(x2 x4 x3x2 x5 x3x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)not (x2 x11 x3)not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)x2 x6 x3x2 x7 x3not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)x2 x6 x3not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)x2 x7 x3not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)x2 x11 x3not (x2 x12 x3)x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x2 x12 x3x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)x2 x8 x3not (x2 x9 x3)not (x2 x10 x3)x2 x11 x3x2 x12 x3x13)(x2 x4 x3not (x2 x5 x3)not (x2 x6 x3)not (x2 x7 x3)not (x2 x8 x3)x2 x9 x3not (x2 x10 x3)x2 x11 x3x2 x12 x3x13)x13
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known 21a7e.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0286f8.. x1 x2 x3 x4 x5 x6 x7 x8 x9 x10286f8.. x1 x2 x3 x5 x4 x7 x6 x8 x9 x10
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 5351b.. : ∀ x0 x1 . ∀ x2 : ι → ι → ο . (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)4402e.. x1 x2cf2df.. x1 x2∀ x3 . x3x1x0setminus x1 (Sing x3)∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0∀ x12 . x12x0286f8.. x2 x4 x5 x6 x7 x8 x9 x10 x11 x12∀ x13 : ο . (∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x068d0b.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x22 x3x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x069a33.. x2 x14 x15 x16 x17 x18 x19 x20 x21 x3 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x04c67f.. x2 x14 x15 x16 x3 x17 x18 x19 x20 x21 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x094fe6.. x2 x14 x15 x16 x3 x17 x18 x19 x20 x21 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0f0c46.. x2 x14 x15 x3 x16 x17 x18 x19 x20 x21 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x04679c.. x2 x14 x15 x16 x17 x3 x18 x19 x20 x21 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x024ede.. x2 x14 x15 x16 x17 x3 x18 x19 x20 x21 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0576d3.. x2 x14 x15 x16 x17 x18 x19 x20 x3 x21 x22x13)(∀ x14 . x14x0∀ x15 . x15x0∀ x16 . x16x0∀ x17 . x17x0∀ x18 . x18x0∀ x19 . x19x0∀ x20 . x20x0∀ x21 . x21x0∀ x22 . x22x0558af.. x2 x14 x15 x16 x17 x18 x19 x3 x20 x21 x22x13)x13 (proof)