Search for blocks/addresses/...
Proofgold Asset
asset id
b86c8a98b67b29c52d959b10a413e3fbdc7a8b94ca20b697e9be95906b7c5c62
asset hash
610407e68334faf30dd42421322c224e9f5340faeb2324b427ac665c5cd8ebfd
bday / block
27854
tx
653f4..
preasset
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
SNoS_
SNoS_
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
sqrt_SNo_nonneg
sqrt_SNo_nonneg
:
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
omega
omega
:
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
SNo_sqrtaux
SNo_sqrtaux
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Definition
False
False
:=
∀ x0 : ο .
x0
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Param
nat_p
nat_p
:
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
nIn
nIn
:
ι
→
ι
→
ο
Known
SNoLtE
SNoLtE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 .
SNo
x3
⟶
SNoLev
x3
∈
binintersect
(
SNoLev
x0
)
(
SNoLev
x1
)
⟶
SNoEq_
(
SNoLev
x3
)
x3
x0
⟶
SNoEq_
(
SNoLev
x3
)
x3
x1
⟶
SNoLt
x0
x3
⟶
SNoLt
x3
x1
⟶
nIn
(
SNoLev
x3
)
x0
⟶
SNoLev
x3
∈
x1
⟶
x2
)
⟶
(
SNoLev
x0
∈
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
SNoLev
x0
∈
x1
⟶
x2
)
⟶
(
SNoLev
x1
∈
SNoLev
x0
⟶
SNoEq_
(
SNoLev
x1
)
x0
x1
⟶
nIn
(
SNoLev
x1
)
x0
⟶
x2
)
⟶
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SNoS_I2
SNoS_I2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
∈
SNoLev
x1
⟶
x0
∈
SNoS_
(
SNoLev
x1
)
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_0
SNo_0
:
SNo
0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
nonneg_mul_SNo_Le2
nonneg_mul_SNo_Le2
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNoLe
0
x0
⟶
SNoLe
0
x1
⟶
SNoLe
x0
x2
⟶
SNoLe
x1
x3
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
SNoL_nonneg
SNoL_nonneg
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Known
SNo_sqrtaux_0
SNo_sqrtaux_0
:
∀ x0 .
∀ x1 :
ι → ι
.
SNo_sqrtaux
x0
x1
0
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
(
prim5
(
SNoL_nonneg
x0
)
x1
)
(
prim5
(
SNoR
x0
)
x1
)
)
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Param
SNoL
SNoL
:
ι
→
ι
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
mul_SNo_SNoCut_SNoL_interpolate_impred
mul_SNo_SNoCut_SNoL_interpolate_impred
:
∀ x0 x1 x2 x3 .
SNoCutP
x0
x1
⟶
SNoCutP
x2
x3
⟶
∀ x4 x5 .
x4
=
SNoCut
x0
x1
⟶
x5
=
SNoCut
x2
x3
⟶
∀ x6 .
x6
∈
SNoL
(
mul_SNo
x4
x5
)
⟶
∀ x7 : ο .
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x2
⟶
SNoLe
(
add_SNo
x6
(
mul_SNo
x8
x9
)
)
(
add_SNo
(
mul_SNo
x8
x5
)
(
mul_SNo
x4
x9
)
)
⟶
x7
)
⟶
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x3
⟶
SNoLe
(
add_SNo
x6
(
mul_SNo
x8
x9
)
)
(
add_SNo
(
mul_SNo
x8
x5
)
(
mul_SNo
x4
x9
)
)
⟶
x7
)
⟶
x7
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
famunionE
famunionE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
x2
∈
x1
x4
)
⟶
x3
)
⟶
x3
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_linear
ordinal_linear
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
⊆
x1
)
(
x1
⊆
x0
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Param
div_SNo
div_SNo
:
ι
→
ι
→
ι
Known
mul_div_SNo_invL
mul_div_SNo_invL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
(
x1
=
0
⟶
∀ x2 : ο .
x2
)
⟶
mul_SNo
(
div_SNo
x0
x1
)
x1
=
x0
Known
pos_mul_SNo_Lt'
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
0
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
SNo_div_SNo
SNo_div_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
div_SNo
x0
x1
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Param
SNo_sqrtauxset
SNo_sqrtauxset
:
ι
→
ι
→
ι
→
ι
Known
SNo_sqrtaux_S
SNo_sqrtaux_S
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nat_p
x2
⟶
SNo_sqrtaux
x0
x1
(
ordsucc
x2
)
=
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
binunion
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
(
SNo_sqrtauxset
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
x0
)
)
(
binunion
(
binunion
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
(
SNo_sqrtauxset
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
)
x0
)
)
(
SNo_sqrtauxset
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
)
x0
)
)
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SNo_sqrtauxset_I
SNo_sqrtauxset_I
:
∀ x0 x1 x2 x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x1
⟶
SNoLt
0
(
add_SNo
x3
x4
)
⟶
div_SNo
(
add_SNo
x2
(
mul_SNo
x3
x4
)
)
(
add_SNo
x3
x4
)
∈
SNo_sqrtauxset
x0
x1
x2
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SNoLe_antisym
SNoLe_antisym
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x0
⟶
x0
=
x1
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
mul_SNo_nonneg_nonneg
mul_SNo_nonneg_nonneg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
0
x0
⟶
SNoLe
0
x1
⟶
SNoLe
0
(
mul_SNo
x0
x1
)
Known
SNo_nonneg_sqr_uniq
SNo_nonneg_sqr_uniq
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
0
x0
⟶
SNoLe
0
x1
⟶
mul_SNo
x0
x0
=
mul_SNo
x1
x1
⟶
x0
=
x1
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Known
sqrt_SNo_nonneg_prop1a
sqrt_SNo_nonneg_prop1a
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLe
0
x1
⟶
and
(
and
(
SNo
(
sqrt_SNo_nonneg
x1
)
)
(
SNoLe
0
(
sqrt_SNo_nonneg
x1
)
)
)
(
mul_SNo
(
sqrt_SNo_nonneg
x1
)
(
sqrt_SNo_nonneg
x1
)
=
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
and
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
(
mul_SNo
x2
x2
)
x0
)
)
(
∀ x2 .
x2
∈
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
⟶
and
(
and
(
SNo
x2
)
(
SNoLe
0
x2
)
)
(
SNoLt
x0
(
mul_SNo
x2
x2
)
)
)
Known
SNo_sqrtaux_mon
SNo_sqrtaux_mon
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nat_p
x2
⟶
∀ x3 .
nat_p
x3
⟶
x2
⊆
x3
⟶
and
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
0
⊆
ap
(
SNo_sqrtaux
x0
x1
x3
)
0
)
(
ap
(
SNo_sqrtaux
x0
x1
x2
)
1
⊆
ap
(
SNo_sqrtaux
x0
x1
x3
)
1
)
Theorem
sqrt_SNo_nonneg_prop1e
sqrt_SNo_nonneg_prop1e
:
∀ x0 .
SNo
x0
⟶
SNoLe
0
x0
⟶
(
∀ x1 .
x1
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLe
0
x1
⟶
and
(
and
(
SNo
(
sqrt_SNo_nonneg
x1
)
)
(
SNoLe
0
(
sqrt_SNo_nonneg
x1
)
)
)
(
mul_SNo
(
sqrt_SNo_nonneg
x1
)
(
sqrt_SNo_nonneg
x1
)
=
x1
)
)
⟶
SNoCutP
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
⟶
SNoLe
0
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
⟶
SNoLt
x0
(
mul_SNo
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
(
SNoCut
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
0
)
)
(
famunion
omega
(
λ x1 .
ap
(
SNo_sqrtaux
x0
sqrt_SNo_nonneg
x1
)
1
)
)
)
)
⟶
False
(proof)