Search for blocks/addresses/...
Proofgold Asset
asset id
620a885e45784bee0e5ffcd544178a6e77bff4d8025a2b92ce73f61e67a43071
asset hash
5cc291101cafe5475a195f081543398e08a473c9d9f9533459c3553e4463bdb4
bday / block
1788
tx
e4836..
preasset
doc published by
PrGxv..
Definition
236c6..
:=
prim1
(
λ x0 .
x0
)
Known
9aea6..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
prim0
x0
x1
=
prim1
x2
⟶
∀ x3 : ο .
x3
Theorem
f558c..
:
∀ x0 x1 .
236c6..
=
prim0
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Known
b4755..
:
∀ x0 x1 :
ι → ι
.
prim1
x0
=
prim1
x1
⟶
x0
=
x1
Theorem
148f8..
:
∀ x0 :
ι →
ι → ι
.
236c6..
=
prim1
(
λ x2 .
prim1
(
x0
x2
)
)
⟶
∀ x1 : ο .
x1
(proof)
Theorem
f2c23..
:
∀ x0 x1 :
ι → ι
.
236c6..
=
prim1
(
λ x3 .
prim0
(
x0
x3
)
(
x1
x3
)
)
⟶
∀ x2 : ο .
x2
(proof)
Definition
57d6a..
:=
λ x0 x1 .
prim0
236c6..
(
prim0
x0
x1
)
Definition
56103..
:=
λ x0 :
ι → ι
.
prim0
236c6..
(
prim1
x0
)
Known
128d8..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
∀ x4 : ο .
(
x0
=
x2
⟶
x1
=
x3
⟶
x4
)
⟶
x4
Theorem
456ec..
:
∀ x0 x1 x2 x3 .
57d6a..
x0
x1
=
57d6a..
x2
x3
⟶
∀ x4 : ο .
(
x0
=
x2
⟶
x1
=
x3
⟶
x4
)
⟶
x4
(proof)
Theorem
c2c0d..
:
∀ x0 x1 :
ι → ι
.
56103..
x0
=
56103..
x1
⟶
x0
=
x1
(proof)
Theorem
59827..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
57d6a..
x0
x1
=
56103..
x2
⟶
∀ x3 : ο .
x3
(proof)
Param
de327..
:
(
ι
→
ο
) →
ι
→
ι
→
ο
Definition
707bb..
:=
λ x0 :
ι → ο
.
λ x1 .
∀ x2 :
(
ι → ο
)
→
ι → ο
.
(
∀ x3 :
ι → ο
.
∀ x4 .
x3
x4
⟶
x2
x3
x4
)
⟶
(
∀ x3 :
ι → ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
x2
(
de327..
x3
x5
)
(
x4
x5
)
)
⟶
x2
x3
(
56103..
x4
)
)
⟶
(
∀ x3 :
ι → ο
.
∀ x4 x5 .
x2
x3
x4
⟶
x2
x3
x5
⟶
x2
x3
(
57d6a..
x4
x5
)
)
⟶
x2
x0
x1
Theorem
05f2a..
:
∀ x0 :
ι → ο
.
∀ x1 .
x0
x1
⟶
707bb..
x0
x1
(proof)
Theorem
62e33..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
(
∀ x2 .
707bb..
(
de327..
x0
x2
)
(
x1
x2
)
)
⟶
707bb..
x0
(
56103..
x1
)
(proof)
Theorem
2da01..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
707bb..
x0
x1
⟶
707bb..
x0
x2
⟶
707bb..
x0
(
57d6a..
x1
x2
)
(proof)
Definition
4b3e1..
:=
λ x0 :
ι → ο
.
λ x1 x2 .
∀ x3 :
(
ι → ο
)
→
ι →
ι → ο
.
(
∀ x4 :
ι → ο
.
∀ x5 :
ι → ι
.
∀ x6 .
(
∀ x7 .
707bb..
(
de327..
x4
x7
)
(
x5
x7
)
)
⟶
707bb..
x4
x6
⟶
x3
x4
(
57d6a..
(
56103..
x5
)
x6
)
(
x5
x6
)
)
⟶
(
∀ x4 :
ι → ο
.
∀ x5 x6 :
ι → ι
.
(
∀ x7 .
x3
(
de327..
x4
x7
)
(
x5
x7
)
(
x6
x7
)
)
⟶
x3
x4
(
56103..
x5
)
(
56103..
x6
)
)
⟶
(
∀ x4 :
ι → ο
.
∀ x5 x6 x7 .
x3
x4
x5
x7
⟶
707bb..
x4
x6
⟶
x3
x4
(
57d6a..
x5
x6
)
(
57d6a..
x7
x6
)
)
⟶
(
∀ x4 :
ι → ο
.
∀ x5 x6 x7 .
x3
x4
x6
x7
⟶
707bb..
x4
x5
⟶
x3
x4
(
57d6a..
x5
x6
)
(
57d6a..
x5
x7
)
)
⟶
x3
x0
x1
x2
Theorem
45772..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
707bb..
(
de327..
x0
x3
)
(
x1
x3
)
)
⟶
707bb..
x0
x2
⟶
4b3e1..
x0
(
57d6a..
(
56103..
x1
)
x2
)
(
x1
x2
)
(proof)
Theorem
9a3a3..
:
∀ x0 :
ι → ο
.
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
4b3e1..
(
de327..
x0
x3
)
(
x1
x3
)
(
x2
x3
)
)
⟶
4b3e1..
x0
(
56103..
x1
)
(
56103..
x2
)
(proof)
Theorem
b7449..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
4b3e1..
x0
x1
x3
⟶
707bb..
x0
x2
⟶
4b3e1..
x0
(
57d6a..
x1
x2
)
(
57d6a..
x3
x2
)
(proof)
Theorem
c99f6..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
4b3e1..
x0
x2
x3
⟶
707bb..
x0
x1
⟶
4b3e1..
x0
(
57d6a..
x1
x2
)
(
57d6a..
x1
x3
)
(proof)
Definition
8e91b..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x0
x4
x5
⟶
x3
x4
x5
)
⟶
(
∀ x4 x5 x6 .
x3
x4
x5
⟶
x3
x5
x6
⟶
x3
x4
x6
)
⟶
x3
x1
x2
Theorem
fed74..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 .
x0
x1
x2
⟶
8e91b..
x0
x1
x2
(proof)
Theorem
8a0cb..
:
∀ x0 :
ι →
ι → ο
.
∀ x1 x2 x3 .
8e91b..
x0
x1
x2
⟶
8e91b..
x0
x2
x3
⟶
8e91b..
x0
x1
x3
(proof)
Definition
316b1..
:=
λ x0 :
ι → ο
.
8e91b..
(
4b3e1..
x0
)
Theorem
f8636..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
4b3e1..
x0
x1
x2
⟶
316b1..
x0
x1
x2
(proof)
Theorem
0e197..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
707bb..
(
de327..
x0
x3
)
(
x1
x3
)
)
⟶
707bb..
x0
x2
⟶
316b1..
x0
(
57d6a..
(
56103..
x1
)
x2
)
(
x1
x2
)
(proof)
Theorem
c4cc0..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
316b1..
x0
x1
x2
⟶
316b1..
x0
x2
x3
⟶
316b1..
x0
x1
x3
(proof)
Definition
df3ca..
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι → ο
.
λ x2 x3 .
∀ x4 :
ι →
ι → ο
.
(
∀ x5 x6 .
x1
x5
x6
⟶
x4
x5
x6
)
⟶
(
∀ x5 .
x0
x5
⟶
x4
x5
x5
)
⟶
(
∀ x5 x6 .
x4
x5
x6
⟶
x4
x6
x5
)
⟶
(
∀ x5 x6 x7 .
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
⟶
x4
x2
x3
Theorem
39a1f..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
x1
x2
x3
⟶
df3ca..
x0
x1
x2
x3
(proof)
Theorem
a286a..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
∀ x2 .
x0
x2
⟶
df3ca..
x0
x1
x2
x2
(proof)
Theorem
1868b..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 .
df3ca..
x0
x1
x2
x3
⟶
df3ca..
x0
x1
x3
x2
(proof)
Theorem
8d17d..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι → ο
.
∀ x2 x3 x4 .
df3ca..
x0
x1
x2
x3
⟶
df3ca..
x0
x1
x3
x4
⟶
df3ca..
x0
x1
x2
x4
(proof)
Definition
d701e..
:=
λ x0 :
ι → ο
.
df3ca..
(
707bb..
x0
)
(
4b3e1..
x0
)
Theorem
d6b7f..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
4b3e1..
x0
x1
x2
⟶
d701e..
x0
x1
x2
(proof)
Theorem
03c76..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
707bb..
(
de327..
x0
x3
)
(
x1
x3
)
)
⟶
707bb..
x0
x2
⟶
d701e..
x0
(
57d6a..
(
56103..
x1
)
x2
)
(
x1
x2
)
(proof)
Theorem
3d3ad..
:
∀ x0 :
ι → ο
.
∀ x1 .
707bb..
x0
x1
⟶
d701e..
x0
x1
x1
(proof)
Theorem
a95d2..
:
∀ x0 :
ι → ο
.
∀ x1 x2 .
d701e..
x0
x1
x2
⟶
d701e..
x0
x2
x1
(proof)
Theorem
553b7..
:
∀ x0 :
ι → ο
.
∀ x1 x2 x3 .
d701e..
x0
x1
x2
⟶
d701e..
x0
x2
x3
⟶
d701e..
x0
x1
x3
(proof)
Param
and
:
ο
→
ο
→
ο
Param
8ac9a..
:
ι
→
ο
Conjecture
90489..
:
∀ x0 : ο .
(
∀ x1 .
and
(
707bb..
8ac9a..
x1
)
(
∀ x2 .
d701e..
(
de327..
8ac9a..
x2
)
(
57d6a..
x1
x2
)
x2
)
⟶
x0
)
⟶
x0
Conjecture
1dd60..
:
∀ x0 : ο .
(
∀ x1 .
and
(
707bb..
8ac9a..
x1
)
(
∀ x2 .
d701e..
(
de327..
8ac9a..
x2
)
(
57d6a..
x1
x2
)
(
57d6a..
x2
(
57d6a..
x1
x2
)
)
)
⟶
x0
)
⟶
x0