Search for blocks/addresses/...
Proofgold Asset
asset id
6258b653f34b7cb7155e7adfb920369695ac046741bf5d7d7f08da992407207a
asset hash
9fcf8572e30150e60785ddf342d67f2bd47648b737baef0ae60158f7b92d6c5f
bday / block
9308
tx
7e9c3..
preasset
doc published by
PrGxv..
Definition
ChurchBoolTru
:=
λ x0 x1 .
x0
Definition
ChurchBoolFal
:=
λ x0 x1 .
x1
Theorem
6d4d5..
:
ChurchBoolTru
=
λ x1 x2 .
x1
(proof)
Theorem
87844..
:
ChurchBoolFal
=
λ x1 x2 .
x2
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
fb516..
:=
λ x0 :
ι →
ι → ι
.
or
(
x0
=
ChurchBoolTru
)
(
x0
=
ChurchBoolFal
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Theorem
c8b93..
:
fb516..
ChurchBoolTru
(proof)
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
cff48..
:
fb516..
ChurchBoolFal
(proof)
Definition
6fb7f..
:=
λ x0 :
ι →
ι → ι
.
x0
=
ChurchBoolFal
Definition
permargs_i_1_0
:=
λ x0 :
ι →
ι → ι
.
λ x1 x2 .
x0
x2
x1
Definition
cc64c..
:=
λ x0 x1 :
ι →
ι → ι
.
λ x2 x3 .
x0
x2
(
x1
x2
x3
)
Definition
c2beb..
:=
λ x0 x1 :
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x2
x3
)
x3
Definition
efcd0..
:=
λ x0 x1 :
ι →
ι → ι
.
λ x2 x3 .
x0
x3
(
x1
x2
x3
)
Definition
355fd..
:=
λ x0 x1 :
ι →
ι → ι
.
λ x2 x3 .
x0
(
x1
x3
x2
)
(
x1
x2
x3
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Theorem
e0d11..
:
ChurchBoolTru
=
ChurchBoolFal
⟶
∀ x0 : ο .
x0
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Theorem
16271..
:
not
(
6fb7f..
ChurchBoolTru
)
(proof)
Theorem
9e259..
:
6fb7f..
ChurchBoolFal
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
2d3e7..
:
∀ x0 : ο .
6fb7f..
(
λ x2 x3 .
If_i
x0
x3
x2
)
=
x0
(proof)
Theorem
9e666..
:
∀ x0 :
ι →
ι → ι
.
6fb7f..
(
permargs_i_1_0
x0
)
⟶
not
(
6fb7f..
x0
)
(proof)
Theorem
20d9c..
:
permargs_i_1_0
ChurchBoolTru
=
ChurchBoolFal
(proof)
Theorem
65f0e..
:
permargs_i_1_0
ChurchBoolFal
=
ChurchBoolTru
(proof)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
ac767..
:
∀ x0 :
ι →
ι → ι
.
fb516..
x0
⟶
6fb7f..
(
permargs_i_1_0
x0
)
=
not
(
6fb7f..
x0
)
(proof)
Theorem
44285..
:
∀ x0 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
(
permargs_i_1_0
x0
)
(proof)
Theorem
36a9a..
:
∀ x0 x1 :
ι →
ι → ι
.
6fb7f..
x0
⟶
6fb7f..
x1
⟶
6fb7f..
(
cc64c..
x0
x1
)
(proof)
Theorem
b2d00..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
fb516..
(
cc64c..
x0
x1
)
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
72083..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
6fb7f..
(
cc64c..
x0
x1
)
=
and
(
6fb7f..
x0
)
(
6fb7f..
x1
)
(proof)
Theorem
d266f..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
fb516..
(
c2beb..
x0
x1
)
(proof)
Theorem
a5c8f..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
6fb7f..
(
c2beb..
x0
x1
)
=
or
(
6fb7f..
x0
)
(
6fb7f..
x1
)
(proof)
Theorem
cb82d..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
fb516..
(
efcd0..
x0
x1
)
(proof)
Theorem
72b33..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
6fb7f..
(
efcd0..
x0
x1
)
=
(
6fb7f..
x0
⟶
6fb7f..
x1
)
(proof)
Theorem
1fbb5..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
fb516..
(
355fd..
x0
x1
)
(proof)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Theorem
19010..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
6fb7f..
(
355fd..
x0
x1
)
=
iff
(
6fb7f..
x0
)
(
6fb7f..
x1
)
(proof)
Known
iff_refl
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
66636..
:
∀ x0 x1 :
ι →
ι → ι
.
fb516..
x0
⟶
fb516..
x1
⟶
6fb7f..
(
355fd..
x0
x1
)
=
(
x0
=
x1
)
(proof)
Definition
f9ee2..
:=
λ x0 :
(
ι →
ι → ι
)
→
ι →
ι → ι
.
cc64c..
(
x0
ChurchBoolTru
)
(
x0
ChurchBoolFal
)
Definition
0f571..
:=
λ x0 :
(
ι →
ι → ι
)
→
ι →
ι → ι
.
c2beb..
(
x0
ChurchBoolTru
)
(
x0
ChurchBoolFal
)
Theorem
4316e..
:
∀ x0 :
(
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
ι →
ι → ι
.
fb516..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
fb516..
(
f9ee2..
x0
)
(proof)
Theorem
ed85c..
:
∀ x0 :
(
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
ι →
ι → ι
.
fb516..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
fb516..
(
0f571..
x0
)
(proof)
Theorem
ac245..
:
∀ x0 :
(
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
ι →
ι → ι
.
fb516..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
6fb7f..
(
f9ee2..
x0
)
=
∀ x2 :
ι →
ι → ι
.
fb516..
x2
⟶
6fb7f..
(
x0
x2
)
(proof)
Theorem
5030e..
:
∀ x0 :
(
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
ι →
ι → ι
.
fb516..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
6fb7f..
(
0f571..
x0
)
=
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
and
(
fb516..
x3
)
(
6fb7f..
(
x0
x3
)
)
⟶
x2
)
⟶
x2
(proof)
Definition
5d5d8..
:=
λ x0 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
ChurchBoolTru
ChurchBoolTru
Definition
a4575..
:=
λ x0 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
ChurchBoolTru
ChurchBoolFal
Definition
17d4e..
:=
λ x0 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
ChurchBoolFal
ChurchBoolTru
Definition
79919..
:=
λ x0 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
ChurchBoolFal
ChurchBoolFal
Definition
64789..
:=
λ x0 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
and
(
and
(
x0
=
λ x2 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x2
(
x0
(
λ x3 x4 :
ι →
ι → ι
.
x3
)
)
(
x0
(
λ x3 x4 :
ι →
ι → ι
.
x4
)
)
)
(
fb516..
(
x0
(
λ x1 x2 :
ι →
ι → ι
.
x1
)
)
)
)
(
fb516..
(
x0
(
λ x1 x2 :
ι →
ι → ι
.
x2
)
)
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
1f808..
:
64789..
5d5d8..
(proof)
Theorem
c54d8..
:
64789..
a4575..
(proof)
Theorem
3a667..
:
64789..
17d4e..
(proof)
Theorem
75e29..
:
64789..
79919..
(proof)
Definition
2a987..
:=
λ x0 x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
cc64c..
(
355fd..
(
x0
(
λ x2 x3 :
ι →
ι → ι
.
x2
)
)
(
x1
(
λ x2 x3 :
ι →
ι → ι
.
x2
)
)
)
(
355fd..
(
x0
(
λ x2 x3 :
ι →
ι → ι
.
x3
)
)
(
x1
(
λ x2 x3 :
ι →
ι → ι
.
x3
)
)
)
Definition
36e15..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
f9ee2..
(
λ x1 :
ι →
ι → ι
.
f9ee2..
(
λ x2 :
ι →
ι → ι
.
x0
(
λ x3 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
x1
x2
)
)
)
Definition
e7e62..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
0f571..
(
λ x1 :
ι →
ι → ι
.
0f571..
(
λ x2 :
ι →
ι → ι
.
x0
(
λ x3 :
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
x1
x2
)
)
)
Theorem
c94f2..
:
∀ x0 x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x0
⟶
64789..
x1
⟶
fb516..
(
2a987..
x0
x1
)
(proof)
Theorem
f8400..
:
∀ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
fb516..
(
36e15..
x0
)
(proof)
Theorem
a4649..
:
∀ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
fb516..
(
e7e62..
x0
)
(proof)
Theorem
5b3b1..
:
∀ x0 x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x0
⟶
64789..
x1
⟶
6fb7f..
(
2a987..
x0
x1
)
=
(
x0
=
x1
)
(proof)
Theorem
3f6be..
:
∀ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
6fb7f..
(
36e15..
x0
)
=
∀ x2 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x2
⟶
6fb7f..
(
x0
x2
)
(proof)
Theorem
0c144..
:
∀ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
64789..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
6fb7f..
(
e7e62..
x0
)
=
∀ x2 : ο .
(
∀ x3 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
and
(
64789..
x3
)
(
6fb7f..
(
x0
x3
)
)
⟶
x2
)
⟶
x2
(proof)
Definition
d1ea4..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
5d5d8..
5d5d8..
Definition
8fca5..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
5d5d8..
a4575..
Definition
96b14..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
5d5d8..
17d4e..
Definition
759e8..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
5d5d8..
79919..
Definition
18324..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
a4575..
5d5d8..
Definition
271f3..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
a4575..
a4575..
Definition
f3396..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
a4575..
17d4e..
Definition
9db64..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
a4575..
79919..
Definition
a9626..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
17d4e..
5d5d8..
Definition
48d8a..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
17d4e..
a4575..
Definition
1bc5f..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
17d4e..
17d4e..
Definition
c8260..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
17d4e..
79919..
Definition
caa86..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
79919..
5d5d8..
Definition
856cc..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
79919..
a4575..
Definition
f4d2c..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
79919..
17d4e..
Definition
cca5e..
:=
λ x0 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
79919..
79919..
Definition
403c9..
:=
λ x0 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
and
(
and
(
x0
=
λ x2 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x2
(
x0
(
λ x3 x4 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
)
)
(
x0
(
λ x3 x4 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x4
)
)
)
(
64789..
(
x0
(
λ x1 x2 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x1
)
)
)
)
(
64789..
(
x0
(
λ x1 x2 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x2
)
)
)
Theorem
74110..
:
403c9..
d1ea4..
(proof)
Theorem
1162a..
:
403c9..
8fca5..
(proof)
Theorem
812b1..
:
403c9..
96b14..
(proof)
Theorem
bff50..
:
403c9..
759e8..
(proof)
Theorem
2e578..
:
403c9..
18324..
(proof)
Theorem
51b07..
:
403c9..
271f3..
(proof)
Theorem
6ccc7..
:
403c9..
f3396..
(proof)
Theorem
63251..
:
403c9..
9db64..
(proof)
Theorem
b1746..
:
403c9..
a9626..
(proof)
Theorem
7439e..
:
403c9..
48d8a..
(proof)
Theorem
3bad1..
:
403c9..
1bc5f..
(proof)
Theorem
873b2..
:
403c9..
c8260..
(proof)
Theorem
3940f..
:
403c9..
caa86..
(proof)
Theorem
305d1..
:
403c9..
856cc..
(proof)
Theorem
e8e54..
:
403c9..
f4d2c..
(proof)
Theorem
b08b1..
:
403c9..
cca5e..
(proof)
Definition
86a98..
:=
λ x0 x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
cc64c..
(
2a987..
(
x0
(
λ x2 x3 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x2
)
)
(
x1
(
λ x2 x3 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x2
)
)
)
(
2a987..
(
x0
(
λ x2 x3 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
)
)
(
x1
(
λ x2 x3 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
)
)
)
Definition
b1eed..
:=
λ x0 :
(
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
36e15..
(
λ x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
36e15..
(
λ x2 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
(
λ x3 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
x1
x2
)
)
)
Definition
fdcb5..
:=
λ x0 :
(
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
e7e62..
(
λ x1 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
e7e62..
(
λ x2 :
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x0
(
λ x3 :
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
x3
x1
x2
)
)
)
Theorem
8a414..
:
∀ x0 x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x0
⟶
403c9..
x1
⟶
fb516..
(
86a98..
x0
x1
)
(proof)
Theorem
60c3d..
:
∀ x0 :
(
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
fb516..
(
b1eed..
x0
)
(proof)
Theorem
9dd5f..
:
∀ x0 :
(
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
fb516..
(
fdcb5..
x0
)
(proof)
Theorem
ee52b..
:
∀ x0 x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x0
⟶
403c9..
x1
⟶
6fb7f..
(
86a98..
x0
x1
)
=
(
x0
=
x1
)
(proof)
Theorem
0b5a5..
:
∀ x0 :
(
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
6fb7f..
(
b1eed..
x0
)
=
∀ x2 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x2
⟶
6fb7f..
(
x0
x2
)
(proof)
Theorem
e5faa..
:
∀ x0 :
(
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
(
∀ x1 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
403c9..
x1
⟶
fb516..
(
x0
x1
)
)
⟶
6fb7f..
(
fdcb5..
x0
)
=
∀ x2 : ο .
(
∀ x3 :
(
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
)
→
(
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
)
→
ι →
ι → ι
.
and
(
403c9..
x3
)
(
6fb7f..
(
x0
x3
)
)
⟶
x2
)
⟶
x2
(proof)